1,293 research outputs found

    Polynomial embedding algorithms for controllers in a behavioral framework

    Get PDF
    In this correspondence, we will establish polynomial algorithms for computation of controllers in the behavioral approach to control, in particular for the computation of controllers that regularly implement a given desired behavior and for controllers that achieve pole placement and stabilization by behavioral full interconnection and partial interconnection. These synthesis problems were studied before in articles by Belur and Trentelman, Rocha and Wood, and Willems in the reference section. In the algorithms, we will apply ideas around the unimodular and stable embedding problems. The algorithms that are presented in this correspondence can be implemented by means of the Polynomial Toolbox of Matlab

    Direct data-driven state-feedback control of general nonlinear systems

    Full text link
    Through the use of the Fundamental Lemma for linear systems, a direct data-driven state-feedback control synthesis method is presented for a rather general class of nonlinear (NL) systems. The core idea is to develop a data-driven representation of the so-called velocity-form, i.e., the time-difference dynamics, of the NL system, which is shown to admit a direct linear parameter-varying (LPV) representation. By applying the LPV extension of the Fundamental Lemma in this velocity domain, a state-feedback controller is directly synthesized to provide asymptotic stability and dissipativity of the velocity-form. By using realization theory, the synthesized controller is realized as a NL state-feedback law for the original unknown NL system with guarantees of universal shifted stability and dissipativity, i.e., stability and dissipativity w.r.t. any (forced) equilibrium point, of the closed-loop behavior. This is achieved by the use of a single sequence of data from the system and a predefined basis function set to span the scheduling map. The applicability of the results is demonstrated on a simulation example of an unbalanced disc.Comment: Accepted for the 62nd IEEE Conference on Decision and Control (CDC2023

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl
    • …
    corecore