87 research outputs found

    Polynomial approximation of high-dimensional Hamilton–Jacobi–Bellman equations and applications to feedback control of semilinear parabolic PDES

    Get PDF
    © 2018 Society for Industrial and Applied Mathematics. A procedure for the numerical approximation of high-dimensional Hamilton–Jacobi–Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the successive Galerkin approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen

    Gradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equations

    Get PDF
    A supervised learning approach for the solution of large-scale nonlinear stabilization problems is presented. A stabilizing feedback law is trained from a dataset generated from State-dependent Riccati Equation solvers. The training phase is enriched by the use of gradient information in the loss function, which is weighted through the use of hyperparameters. High-dimensional nonlinear stabilization tests demonstrate that real-time sequential large-scale Algebraic Riccati Equation solvers can be substituted by a suitably trained feedforward neural network

    A HJB-POD approach for the control of nonlinear PDEs on a tree structure

    Get PDF
    The Dynamic Programming approach allows to compute a feedback control for nonlinear problems, but suffers from the curse of dimensionality. The computation of the control relies on the resolution of a nonlinear PDE, the Hamilton-Jacobi-Bellman equation, with the same dimension of the original problem. Recently, a new numerical method to compute the value function on a tree structure has been introduced. The method allows to work without a structured grid and avoids any interpolation. Here, we aim to test the algorithm for nonlinear two dimensional PDEs. We apply model order reduction to decrease the computational complexity since the tree structure algorithm requires to solve many PDEs. Furthermore, we prove an error estimate which guarantees the convergence of the proposed method. Finally, we show efficiency of the method through numerical tests

    State-dependent Riccati equation feedback stabilization for nonlinear PDEs

    Get PDF
    The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for 2 and ∞ control problems. Depending on the nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers’ PDEs are presented, providing a thorough experimental assessment of the proposed methodology

    Robust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equations

    Get PDF
    Copyright © by SIAM. We propose an approach for the synthesis of robust and optimal feedback controllers for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control systems by a pseudospectral collocation method, leading to high-dimensional nonlinear dynamics. For the reducedorder model, we construct a robust feedback control based on the H∞ control method, which requires the solution of an associated high-dimensional Hamilton-Jacobi-Isaacs nonlinear PDE. The dimensionality of the Isaacs PDE is tackled by means of a separable representation of the control system, and a polynomial approximation ansatz for the corresponding value function. Our method proves to be effective for the robust stabilization of nonlinear dynamics up to dimension d ≈ 12. We assess the robustness and optimality features of our design over a class of nonlinear parabolic PDEs, including nonlinear advection and reaction terms. The proposed design yields a feedback controller achieving optimal stabilization and disturbance rejection properties, along with providing a modeling framework for the robust control of PDEs under parametric uncertainties
    • 

    corecore