809 research outputs found

    The complexity of weighted boolean #CSP*

    Get PDF
    This paper gives a dichotomy theorem for the complexity of computing the partition function of an instance of a weighted Boolean constraint satisfaction problem. The problem is parameterized by a finite set F of nonnegative functions that may be used to assign weights to the configurations (feasible solutions) of a problem instance. Classical constraint satisfaction problems correspond to the special case of 0,1-valued functions. We show that computing the partition function, i.e., the sum of the weights of all configurations, is FP#P-complete unless either (1) every function in F is of “product type,” or (2) every function in F is “pure affine.” In the remaining cases, computing the partition function is in P

    On Integrability and Exact Solvability in Deterministic and Stochastic Laplacian Growth

    Full text link
    We review applications of theory of classical and quantum integrable systems to the free-boundary problems of fluid mechanics as well as to corresponding problems of statistical mechanics. We also review important exact results obtained in the theory of multi-fractal spectra of the stochastic models related to the Laplacian growth: Schramm-Loewner and Levy-Loewner evolutions

    Random structures for partially ordered sets

    Get PDF
    This thesis is presented in two parts. In the first part, we study a family of models of random partial orders, called classical sequential growth models, introduced by Rideout and Sorkin as possible models of discrete space-time. We analyse a particular model, called a random binary growth model, and show that the random partial order produced by this model almost surely has infinite dimension. We also give estimates on the size of the largest vertex incomparable to a particular element of the partial order. We show that there is some positive probability that the random partial order does not contain a particular subposet. This contrasts with other existing models of partial orders. We also study "continuum limits" of sequences of classical sequential growth models. We prove results on the structure of these limits when they exist, highlighting a deficiency of these models as models of space-time. In the second part of the thesis, we prove some correlation inequalities for mappings of rooted trees into complete trees. For T a rooted tree we can define the proportion of the total number of embeddings of T into a complete binary tree that map the root of T to the root of the complete binary tree. A theorem of Kubicki, Lehel and Morayne states that, for two binary trees with one a subposet of the other, this proportion is larger for the larger tree. They conjecture that the same is true for two arbitrary trees with one a subposet of the other. We disprove this conjecture by analysing the asymptotics of this proportion for large complete binary trees. We show that the theorem of Kubicki, Lehel and Morayne can be thought of as a correlation inequality which enables us to generalise their result in other directions
    • …
    corecore