1,295 research outputs found

    Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix

    Get PDF
    Given a nonsingular n×nn \times n matrix of univariate polynomials over a field K\mathbb{K}, we give fast and deterministic algorithms to compute its determinant and its Hermite normal form. Our algorithms use O~(nωs)\widetilde{\mathcal{O}}(n^\omega \lceil s \rceil) operations in K\mathbb{K}, where ss is bounded from above by both the average of the degrees of the rows and that of the columns of the matrix and ω\omega is the exponent of matrix multiplication. The soft-OO notation indicates that logarithmic factors in the big-OO are omitted while the ceiling function indicates that the cost is O~(nω)\widetilde{\mathcal{O}}(n^\omega) when s=o(1)s = o(1). Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix.Comment: 34 pages, 3 algorithm

    The Width and Integer Optimization on Simplices With Bounded Minors of the Constraint Matrices

    Full text link
    In this paper, we will show that the width of simplices defined by systems of linear inequalities can be computed in polynomial time if some minors of their constraint matrices are bounded. Additionally, we present some quasi-polynomial-time and polynomial-time algorithms to solve the integer linear optimization problem defined on simplices minus all their integer vertices assuming that some minors of the constraint matrices of the simplices are bounded.Comment: 12 page

    A local construction of the Smith normal form of a matrix polynomial

    Get PDF
    We present an algorithm for computing a Smith form with multipliers of a regular matrix polynomial over a field. This algorithm differs from previous ones in that it computes a local Smith form for each irreducible factor in the determinant separately and then combines them into a global Smith form, whereas other algorithms apply a sequence of unimodular row and column operations to the original matrix. The performance of the algorithm in exact arithmetic is reported for several test cases.Comment: 26 pages, 6 figures; introduction expanded, 10 references added, two additional tests performe

    A Canonical Form for Positive Definite Matrices

    Get PDF
    We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations. We use characteristic sets of short vectors and partition-backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential in the dimension nn, but it is practical and more efficient than canonical forms based on Minkowski reduction
    corecore