191 research outputs found

    Intra-procedural Path-insensitive Grams (i-grams) and Disassembly Based Features for Packer Tool Classification and Detection

    Get PDF
    The DoD relies on over seven million computing devices worldwide to accomplish a wide range of goals and missions. Malicious software, or malware, jeopardizes these goals and missions. However, determining whether an arbitrary software executable is malicious can be difficult. Obfuscation tools, called packers, are often used to hide the malicious intent of malware from anti-virus programs. Therefore detecting whether or not an arbitrary executable file is packed is a critical step in software security. This research uses machine learning methods to build a system, the Polymorphic and Non-Polymorphic Packer Detection (PNPD) system, that detects whether an executable is packed using both sequences of instructions, called i-grams, and disassembly information as features for machine learning. Both i-grams and disassembly features successfully detect packed executables with top configurations achieving average accuracies above 99.5\%, average true positive rates above 0.977, and average false positive rates below 1.6e-3 when detecting polymorphic packers

    Classifying malicious windows executables using anomaly based detection

    Get PDF
    A malicious executable is broadly defined as any program or piece of code designed to cause damage to a system or the information it contains, or to prevent the system from being used in a normal manner. A generic term used to describe any kind of malicious software is Maiware, which includes Viruses, Worms, Trojans, Backdoors, Root-kits, Spyware and Exploits. Anomaly detection is technique which builds a statistical profile of the normal and malicious data and classifies unseen data based on these two profiles. A detection system is presented here which is anomaly based and focuses on the Windows® platform. Several file infection techniques were studied to understand what particular features in the executable binary are more susceptible to being used for the malicious code propagation. A framework is presented for collecting data for both static (non-execution based) as well as dynamic (execution based) analysis of the malicious executables. Two specific features are extracted using static analysis, Windows API (from the Import Address Table of the Portable Executable Header) and the hex byte frequency count (collected using Hexdump utility) which have been explained in detail. Dynamic analysis features which were extracted are briefly mentioned and the major challenges faced using this data is explained. Classification results using Support Vector Machines for anomaly detection is shown for the two static analysis features. Experimental results have provided classification results with up to 94% accuracy for new, previously unseen executables

    Discovering New Vulnerabilities in Computer Systems

    Get PDF
    Vulnerability research plays a key role in preventing and defending against malicious computer system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals today tirelessly launch malicious exploitations, threatening every aspect of daily computing. to effectively protect computer systems from devastation, it is imperative to discover and mitigate vulnerabilities before they fall into the offensive parties\u27 hands. This dissertation is dedicated to the research and discovery of new design and deployment vulnerabilities in three very different types of computer systems.;The first vulnerability is found in the automatic malicious binary (malware) detection system. Binary analysis, a central piece of technology for malware detection, are divided into two classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both classes of analyses to complement each other\u27s strengths and weaknesses for improved detection results. However, we found that the commonly seen design patterns may suffer from evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing a novel binary obfuscation technique.;The second vulnerability is located in the design of server system power management. Technological advancements have improved server system power efficiency and facilitated energy proportional computing. However, the change of power profile makes the power consumption subjected to unaudited influences of remote parties, leaving the server systems vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on a standalone open Web server, measure the extent of the damage, and present a preliminary defense strategy.;The third vulnerability is discovered in the application of server virtualization technologies. Server virtualization greatly benefits today\u27s data centers and brings pervasive cloud computing a step closer to the general public. However, the practice of physical co-hosting virtual machines with different security privileges risks introducing covert channels that seriously threaten the information security in the cloud. We study the construction of high-bandwidth covert channels via the memory sub-system, and show a practical exploit of cross-virtual-machine covert channels on virtualized x86 platforms

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems

    Malware Resistant Data Protection in Hyper-connected Networks: A survey

    Full text link
    Data protection is the process of securing sensitive information from being corrupted, compromised, or lost. A hyperconnected network, on the other hand, is a computer networking trend in which communication occurs over a network. However, what about malware. Malware is malicious software meant to penetrate private data, threaten a computer system, or gain unauthorised network access without the users consent. Due to the increasing applications of computers and dependency on electronically saved private data, malware attacks on sensitive information have become a dangerous issue for individuals and organizations across the world. Hence, malware defense is critical for keeping our computer systems and data protected. Many recent survey articles have focused on either malware detection systems or single attacking strategies variously. To the best of our knowledge, no survey paper demonstrates malware attack patterns and defense strategies combinedly. Through this survey, this paper aims to address this issue by merging diverse malicious attack patterns and machine learning (ML) based detection models for modern and sophisticated malware. In doing so, we focus on the taxonomy of malware attack patterns based on four fundamental dimensions the primary goal of the attack, method of attack, targeted exposure and execution process, and types of malware that perform each attack. Detailed information on malware analysis approaches is also investigated. In addition, existing malware detection techniques employing feature extraction and ML algorithms are discussed extensively. Finally, it discusses research difficulties and unsolved problems, including future research directions.Comment: 30 pages, 9 figures, 7 tables, no where submitted ye

    Detecting Malicious Software By Dynamicexecution

    Get PDF
    Traditional way to detect malicious software is based on signature matching. However, signature matching only detects known malicious software. In order to detect unknown malicious software, it is necessary to analyze the software for its impact on the system when the software is executed. In one approach, the software code can be statically analyzed for any malicious patterns. Another approach is to execute the program and determine the nature of the program dynamically. Since the execution of malicious code may have negative impact on the system, the code must be executed in a controlled environment. For that purpose, we have developed a sandbox to protect the system. Potential malicious behavior is intercepted by hooking Win32 system calls. Using the developed sandbox, we detect unknown virus using dynamic instruction sequences mining techniques. By collecting runtime instruction sequences in basic blocks, we extract instruction sequence patterns based on instruction associations. We build classification models with these patterns. By applying this classification model, we predict the nature of an unknown program. We compare our approach with several other approaches such as simple heuristics, NGram and static instruction sequences. We have also developed a method to identify a family of malicious software utilizing the system call trace. We construct a structural system call diagram from captured dynamic system call traces. We generate smart system call signature using profile hidden Markov model (PHMM) based on modularized system call block. Smart system call signature weakly identifies a family of malicious software

    Malware Detection Based on Structural and Behavioural Features of API Calls

    Get PDF
    In this paper, we propose a five-step approach to detect obfuscated malware by investigating the structural and behavioural features of API calls. We have developed a fully automated system to disassemble and extract API call features effectively from executables. Using n-gram statistical analysis of binary content, we are able to classify if an executable file is malicious or benign. Our experimental results with a dataset of 242 malwares and 72 benign files have shown a promising accuracy of 96.5% for the unigram model. We also provide a preliminary analysis by our approach using support vector machine (SVM) and by varying n-values from 1 to 5, we have analysed the performance that include accuracy, false positives and false negatives. By applying SVM, we propose to train the classifier and derive an optimum n-gram model for detecting both known and unknown malware efficiently
    • …
    corecore