56,455 research outputs found

    Rigid ball-polyhedra in Euclidean 3-space

    Full text link
    A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to containment). To each edge of a ball-polyhedron one can assign an inner dihedral angle and say that the given ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex-edge-face structure of the ball-polyhedron and its inner dihedral angles determine the ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-type rigidity theorem for ball-polyhedra stating that any simple and standard ball-polyhedron is locally rigid with respect to its inner dihedral angles.Comment: 11 pages, 2 figure

    Vertex-Facet Incidences of Unbounded Polyhedra

    Get PDF
    How much of the combinatorial structure of a pointed polyhedron is contained in its vertex-facet incidences? Not too much, in general, as we demonstrate by examples. However, one can tell from the incidence data whether the polyhedron is bounded. In the case of a polyhedron that is simple and "simplicial," i.e., a d-dimensional polyhedron that has d facets through each vertex and d vertices on each facet, we derive from the structure of the vertex-facet incidence matrix that the polyhedron is necessarily bounded. In particular, this yields a characterization of those polyhedra that have circulants as vertex-facet incidence matrices.Comment: LaTeX2e, 14 pages with 4 figure

    Epsilon-Unfolding Orthogonal Polyhedra

    Get PDF
    An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cuts are not necessarily along edges of the polyhedron, but they are always parallel to polyhedron edges. For a polyhedron of n vertices, portions of the unfolding will be rectangular strips which, in the worst case, may need to be as thin as epsilon = 1/2^{Omega(n)}.Comment: 23 pages, 20 figures, 7 references. Revised version improves language and figures, updates references, and sharpens the conclusio

    Faces, Edges, Vertices of Some Polyhedra

    Get PDF
    A proof that: for any given polyhedron so shaped that every closed non-self intersecting broken line composed of edges of the polyhedron divides the surface of the polyhedron into precisely two disjoint regions each of which is bounded by the closed broken line, v - e + f = 2, where v is the number of vertices of the polyhedron, e the number of edges and f the number of faces

    An infinitesimally nonrigid polyhedron with nonstationary volume in the Lobachevsky 3-space

    Full text link
    We give an example of an infinitesimally nonrigid polyhedron in the Lobachevsky 3-space and construct an infinitesimal flex of that polyhedron such that the volume of the polyhedron isn't stationary under the flex.Comment: 10 pages, 2 Postscript figure

    Volume estimates for equiangular hyperbolic Coxeter polyhedra

    Full text link
    An equiangular hyperbolic Coxeter polyhedron is a hyperbolic polyhedron where all dihedral angles are equal to \pi/n for some fixed integer n at least 2. It is a consequence of Andreev's theorem that either n=3 and the polyhedron has all ideal vertices or that n=2. Volume estimates are given for all equiangular hyperbolic Coxeter polyhedra.Comment: 27 pages, 11 figures; corrected typo in Theorem 2.
    corecore