4,680 research outputs found

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface

    Full text link
    Given a graph GG cellularly embedded on a surface Σ\Sigma of genus gg, a cut graph is a subgraph of GG such that cutting Σ\Sigma along GG yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε>0\varepsilon >0, we show how to compute a (1+ε)(1+ \varepsilon) approximation of the shortest cut graph in time f(ε,g)n3f(\varepsilon, g)n^3. Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Ru\'e, Sau and Thilikos, which may be of independent interest

    Tropical Geometry of Statistical Models

    Get PDF
    This paper presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. The question addressed here is how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. A key role is played by the Newton polytope of a statistical model. Our results are applied to the hidden Markov model and to the general Markov model on a binary tree.Comment: 14 pages, 3 figures. Major revision. Applications now in companion paper, "Parametric Inference for Biological Sequence Analysis

    A-Tint: A polymake extension for algorithmic tropical intersection theory

    Full text link
    In this paper we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus of this paper is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.Comment: 32 pages, 5 figures, 4 tables. Second version: Revised version, to be published in European Journal of Combinatoric
    corecore