2,060 research outputs found

    Valid Inequalities and Reformulation Techniques for Mixed Integer Nonlinear Programming

    Get PDF
    One of the most important breakthroughs in the area of Mixed Integer Linear Programming (MILP) is the characterization of the convex hull of specially structured non-convex polyhedral sets in order to develop valid inequalities or cutting planes. Development of strong valid inequalities such as Split cuts, Gomory Mixed Integer (GMI) cuts, and Mixed Integer Rounding (MIR) cuts has resulted in highly effective branch-and-cut algorithms. While such cuts are known to be equivalent, each of their characterizations provides different advantages and insights. The study of cutting planes for Mixed Integer Nonlinear Programming (MINLP) is still much more limited than that for MILP, since characterizing cuts for MINLP requires the study of the convex hull of a non-convex and non-polyhedral set, which has proven to be significantly harder than the polyhedral case. However, there has been significant work on the computational use of cuts in MINLP. Furthermore, there has recently been a significant interest in extending the associated theoretical results from MILP to the realm of MINLP. This dissertation is focused on the development of new cuts and extended formulations for Mixed Integer Nonlinear Programs. We study the generalization of split, k-branch split, and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the difference between a convex set and an open set with a simple geometric structure. We introduce two techniques to give precise characterizations of such convex hulls and use them to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral sets. We also study the relation between the introduced cuts and some known classes of cutting planes from MILP. Furthermore, we show how an aggregation technique can be easily extended to characterize the convex hull of sets defined by two quadratic or by a conic quadratic and a quadratic inequality. We also computationally evaluate the performance of the introduced cuts and extended formulations on two classes of MINLP problems

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions
    corecore