112 research outputs found

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    Abstraction Raising in General-Purpose Compilers

    Get PDF

    Compiler-centric across-stack deep learning acceleration

    Get PDF
    Optimizing the deployment of Deep Neural Networks (DNNs) is hard. Despite deep learning approaches increasingly providing state-of-the-art solutions to a variety of difficult problems, such as computer vision and natural language processing, DNNs can be prohibitively expensive, for example, in terms of inference time or memory usage. Effective exploration of the design space requires a holistic approach, including a range of topics from machine learning, systems, and hardware. The rapid proliferation of deep learning applications has raised demand for efficient exploration and acceleration of deep learning based solutions. However, managing the range of optimization techniques, as well as how they interact with each other across the stack is a non-trivial task. A family of emerging specialized compilers for deep learning, tensor compilers, appear to be a strong candidate to help manage the complexity of across-stack optimization choices, and enable new approaches. This thesis presents new techniques and explorations of the Deep Learning Acceleration Stack (DLAS), with the perspective that the tensor compiler will increasingly be the center of this stack. First, we motivate the challenges in exploring DLAS, by describing the experience of running a perturbation study varying parameters at every layer of the stack. The core of the study is implemented using a tensor compiler, which reduces the complexity of evaluating the wide range of variants, although still requires a significant engineering effort to realize. Next, we develop a new algorithm for grouped convolution, a model optimization technique for which existing solutions provided poor inference time scaling. We implement and optimize our algorithm using a tensor compiler, outperforming existing approaches by 5.1× on average (arithmetic mean). Finally, we propose a technique, transfer-tuning, to reduce the search time required for automatic tensor compiler code optimization, reducing the search time required by 6.5× on average. The techniques and contributions of this thesis across these interconnected domains demonstrate the exciting potential of tensor compilers to simplify and improve design space exploration for DNNs, and their deployment. The outcomes of this thesis enable new lines of research to enable machine learning developers to keep up with the rapidly evolving landscape of neural architectures and hardware

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa
    • …
    corecore