2,094 research outputs found

    Locked and Unlocked Chains of Planar Shapes

    Full text link
    We extend linkage unfolding results from the well-studied case of polygonal linkages to the more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints. Our goal is to characterize the families of planar shapes that admit locked chains, where some configurations cannot be reached by continuous reconfiguration without self-intersection, and which families of planar shapes guarantee universal foldability, where every chain is guaranteed to have a connected configuration space. Previously, only obtuse triangles were known to admit locked shapes, and only line segments were known to guarantee universal foldability. We show that a surprisingly general family of planar shapes, called slender adornments, guarantees universal foldability: roughly, the distance from each edge along the path along the boundary of the slender adornment to each hinge should be monotone. In contrast, we show that isosceles triangles with any desired apex angle less than 90 degrees admit locked chains, which is precisely the threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof details. (Fixed crash-induced bugs in the abstract.

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Self-Replicating Strands that Self-Assemble into User-Specified Meshes

    Get PDF
    It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. In previous work (JohnnyVon 1.0), we simulated machines that bonded together to form self-replicating strands. There were two types of machines (called types 0 and 1), which enabled strands to encode arbitrary bit strings. However, the information encoded in the strands had no functional role in the simulation. The information was replicated without being interpreted, which was a significant limitation for potential manufacturing applications. In the current work (JohnnyVon 2.0), the information in a strand is interpreted as instructions for assembling a polygonal mesh. There are now four types of machines and the information encoded in a strand determines how it folds. A strand may be in an unfolded state, in which the bonds are straight (although they flex slightly due to virtual forces acting on the machines), or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with free machines in the soup. The child strands fold into the encoded polygonal shape, and then the polygons drift together and bond to form a mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the simulation, by simply changing the sequence of machine types in the seed

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Quantum Gravity in Large Dimensions

    Full text link
    Quantum gravity is investigated in the limit of a large number of space-time dimensions, using as an ultraviolet regularization the simplicial lattice path integral formulation. In the weak field limit the appropriate expansion parameter is determined to be 1/d1/d. For the case of a simplicial lattice dual to a hypercube, the critical point is found at kc/λ=1/dk_c/\lambda=1/d (with k=1/8πGk=1/8 \pi G) separating a weak coupling from a strong coupling phase, and with 2d22 d^2 degenerate zero modes at kck_c. The strong coupling, large GG, phase is then investigated by analyzing the general structure of the strong coupling expansion in the large dd limit. Dominant contributions to the curvature correlation functions are described by large closed random polygonal surfaces, for which excluded volume effects can be neglected at large dd, and whose geometry we argue can be approximated by unconstrained random surfaces in this limit. In large dimensions the gravitational correlation length is then found to behave as log(kck)1/2| \log (k_c - k) |^{1/2}, implying for the universal gravitational critical exponent the value ν=0\nu=0 at d=d=\infty.Comment: 47 pages, 2 figure

    Polygonal path simplification with angle constraints

    Get PDF
    We present efficient geometric algorithms for simplifying polygonal paths in R2 and R3 that have angle constraints, improving by nearly a linear factor over the graph-theoretic solutions based on known techniques. The algorithms we present match the time bounds for their unconstrained counterparts. As a key step in our solutions, we formulate and solve an off-line ball exclusion search problem, which may be of interest in its own right
    corecore