33 research outputs found

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Generalisation : graphs and colourings

    Get PDF
    The interaction between practice and theory in mathematics is a central theme. Many mathematical structures and theories result from the formalisation of a real problem. Graph Theory is rich with such examples. The graph structure itself was formalised by Leonard Euler in the quest to solve the problem of the Bridges of Königsberg. Once a structure is formalised, and results are proven, the mathematician seeks to generalise. This can be considered as one of the main praxis in mathematics. The idea of generalisation will be illustrated through graph colouring. This idea also results from a classic problem, in which it was well known by topographers that four colours suffice to colour any map such that no countries sharing a border receive the same colour. The proof of this theorem eluded mathematicians for centuries and was proven in 1976. Generalisation of graphs to hypergraphs, and variations on the colouring theme will be discussed, as well as applications in other disciplines.peer-reviewe

    Facial Achromatic Number of Triangulations with Given Guarding Number

    Get PDF
    A (not necessarily proper) kk-coloring c:V(G)→{1,2,…,k}c : V(G) \rightarrow \{1,2,\dots,k\} of a graph GG on a surface is a {\em facial tt-complete kk-coloring} if every tt-tuple of colors appears on the boundary of some face of GG. The maximum number kk such that GG has a facial tt-complete kk-coloring is called a {\em facial tt-achromatic number} of GG, denoted by ψt(G)\psi_t(G). In this paper, we investigate the relation between the facial 3-achromatic number and guarding number of triangulations on a surface, where a {\em guarding number} of a graph GG embedded on a surface, denoted by \gd(G), is the smallest size of its {\em guarding set} which is a generalized concept of guards in the art gallery problem. We show that for any graph GG embedded on a surface, \psi_{\Delta(G^*)}(G) \leq \gd(G) + \Delta(G^*) - 1, where Δ(G∗)\Delta(G^*) is the largest face size of GG. Furthermore, we investigate sufficient conditions for a triangulation GG on a surface to satisfy \psi_{3}(G) = \gd(G) + 2. In particular, we prove that every triangulation GG on the sphere with \gd(G) = 2 satisfies the above equality and that for one with guarding number 33, it also satisfies the above equality with sufficiently large number of vertices

    Proper coloring of geometric hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored such that any member of F that contains at least m points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then m = 3 is sufficient. We prove that when F is the family of all homothetic copies of a given convex polygon, then such an m exists. We also study the problem in higher dimensions. © Balázs Keszegh and Dömötör Pálvölgyi

    Proper Coloring of Geometric Hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored such that any member of F that contains at least m points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then m=3 is sufficient. We prove that when F is the family of all homothetic copies of a given convex polygon, then such an m exists. We also study the problem in higher dimensions

    Proper Coloring of Geometric Hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored so that anymember ofF that contains at leastm points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then such an m exists. We prove this in the special case when F is the family of all homothetic copies of a given convex polygon. We also study the problem in higher dimensions

    Extremal colorings and extremal satisfiability

    Full text link
    Combinatorial problems are often easy to state and hard to solve. A whole bunch of graph coloring problems falls into this class as well as the satisfiability problem. The classical coloring problems consider colorings of objects such that two objects which are in a relation receive different colors, e.g., proper vertex-colorings, proper edge-colorings, or proper face-colorings of plane graphs. A generalization is to color the objects such that some predefined patterns are not monochromatic. Ramsey theory deals with questions under what conditions such colorings can occur. A more restrictive version of colorings forces some substructures to be polychromatic, i.e., to receive all colors used in the coloring at least once. Also a true-false-assignment to the boolean variables of a formula can be seen as a 2-coloring of the literals where there are restrictions that complementary literals receive different colors. Mostly, the hardness of such problems is been made explicit by proving that they are NP-hard. This indicates that there might be no simple characterization of all solvable instances. Extremal questions then become quite handy, because they do not aim at a complete characteriziation, but rather focus on one parameter and ask for its minimum or maximum value. The goal of this thesis is to demonstrate this general way on different problems in the area of graph colorings and satisfiability of boolean formulas. First, we consider graphs where all edge-2-colorings contain a monochromatic copy of some fixed graph H. Such graphs are called H-Ramsey graphs and we concentrate on their minimum degree. Its minimization is the question we are going to answer for H being a biregular bipartite graph, a forest, or a bipartite graph where the size of both partite sets are equal. Second, vertex-colorings of plane multigraphs are studied such that each face is polychromatic. A natural parameter to upper bound the number of colors which can be used in such a coloring is the size g of the smallest face. We show that every graph can be polychromatically colored with \floor{3g-5}{4} colors and there are examples for which this bound is almost tight. Third, we consider a variant of the satisfiability problem where only some (not necessarily all) assignments are allowed. A natural way to choose such a set of allowed assignments is to use a context-free language. If in addition the number of all allowed assignments of length n is lower bounded by Ω(αn)\Omega(\alpha^n) (an) for some α>1\alpha > 1, then this restricted satisfiability problem will be shown to be NP-hard. Otherwise, there are only polynomially many allowed assignments and the restricted satisfiability problem is proven to be polynomially solvable
    corecore