13 research outputs found

    Pairing strategies for the Maker-Breaker game on the hypercube with subcubes as winning sets

    Full text link
    We consider the Maker-Breaker positional game on the vertices of the nn-dimensional hypercube {0,1}n\{0,1\}^n with kk-dimensional subcubes as winning sets. We describe a pairing strategy which allows Breaker to win if nn is a power of 4 and k≥n/4+1k \ge n/4 +1. Our results also imply that for all n≥3n \geq 3 there is a Breaker's win pairing strategy if k≥⌊37n⌋+1k \ge \left\lfloor\frac{3}{7}n\right\rfloor +1.Comment: 24 page

    Vertex Ramsey problems in the hypercube

    Get PDF
    If we 2-color the vertices of a large hypercube what monochromatic substructures are we guaranteed to find? Call a set S of vertices from Q_d, the d-dimensional hypercube, Ramsey if any 2-coloring of the vertices of Q_n, for n sufficiently large, contains a monochromatic copy of S. Ramsey's theorem tells us that for any r \geq 1 every 2-coloring of a sufficiently large r-uniform hypergraph will contain a large monochromatic clique (a complete subhypergraph): hence any set of vertices from Q_d that all have the same weight is Ramsey. A natural question to ask is: which sets S corresponding to unions of cliques of different weights from Q_d are Ramsey? The answer to this question depends on the number of cliques involved. In particular we determine which unions of 2 or 3 cliques are Ramsey and then show, using a probabilistic argument, that any non-trivial union of 39 or more cliques of different weights cannot be Ramsey. A key tool is a lemma which reduces questions concerning monochromatic configurations in the hypercube to questions about monochromatic translates of sets of integers.Comment: 26 pages, 3 figure

    Polychromatic colorings of certain subgraphs of complete graphs and maximum densities of substructures of a hypercube

    Get PDF
    If G is a graph and H is a set of subgraphs of G, an edge-coloring of G is H-polychromatic if every graph from H gets all colors present in G on its edges. The H-polychromatic number of G, polyHG, is the largest number of colors in an H-polychromatic coloring. We determine polyHG exactly when G is a complete graph on n vertices, q a fixed nonnegative integer, and H is the family of one of: all matchings spanning n-q vertices, all 2-regular graphs spanning at least n-q vertices, or all cycles of length precisely n-q. For H, K, subsets of the vertex set V(Qd) of the d-cube Qd, K is an exact copy of H if there is an automorphism of Qd sending H to K. For a positive integer, d, and a configuration in Qd, H, we define λ(H,d) as the limit as n goes to infinity of the maximum fraction, over all subsets S of V(Qn), of sub-d-cubes of Qn whose intersection with S is an exact copy of H. We determine λ(C8,4) and λ(P4,3) where C8 is a “perfect” 8-cycle in Q4 and P4 is a “perfect” path with 4 vertices in Q3, λ(H,d) for several configurations in Q2, Q3, and Q4, and an infinite family of configurations. Strong connections exist with extensions Ramsey numbers for cycles in a graph, counting sequences with certain properties, inducibility of graphs, and we determine the inducibility of two vertex disjoint edges in the family of bipartite graphs
    corecore