698 research outputs found

    Sensing Materials for Surface Acoustic Wave Chemical Sensors

    Get PDF
    Online real‐time monitoring of gases requires a miniaturized, passive, and accurate gas sensor. Surface acoustic wave (SAW) devices possess these properties which make them suitable for gas‐sensing applications. They have shown remarkable results in sensing of different gases in terms of sensitivity, selectivity, response, and recovery times. One of the important prerequisites a designer should know is to have knowledge on the different types of sensing material suitable for gas‐sensing applications, prior to design and fabrication of the sensor. Different sensing materials, including metal oxides, polymers, carbon nanotubes, graphene, nanocomposites, etc. have been used for SAW gas sensors. In this article, different sensing materials for SAW gas sensors will be discussed

    Surface Acoustic Wave Ammonia Sensors Based on ST-cut Quartz under Periodic Al Structure

    Get PDF
    Surface acoustic wave (SAW) devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO3 composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen

    Gas Sensors Based on Conducting Polymers

    Get PDF
    Since the discovery of conducting polymers (CPs), their unique properties and tailor-made structures on-demand have shown in the last decade a renaissance and have been widely used in fields of chemistry and materials science. The chemical and thermal stability of CPs under ambient conditions greatly enhances their utilizations as active sensitive layers deposited either by in situ chemical or by electrochemical methodologies over electrodes and electrode arrays for fabricating gas sensor devices, to respond and/or detect particular toxic gases, volatile organic compounds (VOCs), and ions trapping at ambient temperature for environmental remediation and industrial quality control of production. Due to the extent of the literature on CPs, this chapter, after a concise introduction about the development of methods and techniques in fabricating CP nanomaterials, is focused exclusively on the recent advancements in gas sensor devices employing CPs and their nanocomposites. The key issues on nanostructured CPs in the development of state-of-the-art miniaturized sensor devices are carefully discussed. A perspective on next-generation sensor technology from a material point of view is demonstrated, as well. This chapter is expected to be comprehensive and useful to the chemical community interested in CPs-based gas sensor applications

    Toward a new generation of photonic humidity sensors

    Get PDF
    This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors

    Gas Sensors Based on Electrospun Nanofibers

    Get PDF
    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films

    Nanocomposite Films for Gas Sensing

    Get PDF
    Nanocomposite films are thin films formed by mixing two or more dissimilar materials having nano-dimensional phase(s) in order to control and develop new and improved structures and properties. The properties of nanocomposite films depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite films that combine materials with synergetic or complementary behaviours possess unique physical, chemical, optical, mechanical, magnetic and electrical properties unavailable from that of the component materials and have attracted much attention for a wide range of device applications such as gas sensors.NRC publication: Ye

    Chemiresistive polyaniline-based gas sensors: a mini review

    Get PDF
    This review focuses on some recent advances made in the field of gas sensors based on polyaniline [PANI], a conducting polymer with excellent electronic conductivity and electrochemical properties. Conducting polymers represent an important class of organic materials with an enhanced resistivity towards external stimuli. Among them, PANI polymers have attracted wide interest because of the versatility in their use, combined with the easy of synthesis, high yield and good environmental stability, together with a favorable response to guest molecules at room temperature. Moreover, PANI can be shaped into various structures with different morphologies and the possibility of obtaining nanofibers, in addition to thin films, has opened a rapid development of ultrasensitive chemical sensors, with improved processability and functionality. This review provides a brief description of the current status of gas chemiresistive sensors based on polyaniline and highlights the properties and applications of these devices in diverse range of applications. © 2015 Elsevier B.V. All rights reserved

    Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer.

    Get PDF
    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.This work was supported by NSFC (Nos. 61274037, 61274123, and 61474099) and the Zhejiang Provincial NSF (Nos. Z11101168 and LR12F04001). The authors also would like to acknowledge the financial support by the Innovation Platform of Micro/Nano devices and Integration System, Zhejiang University. TH wishes to acknowledge funding from the Royal Academy of Engineering. YX thanks the award from China Scholarship Council (CSC), Scholarship of Cyber Innovation Joint Research Center, Support by the Fundamental Research Funds for the Central Universities (2014XZZX006), and Fellowship from Churchill College at University of Cambridge.This is the final published version of the article. It originally appeared at http://www.nature.com/srep/2014/141126/srep07206/full/srep07206.html

    Smart polymers in micro and nano sensory devices

    Get PDF
    The present review presents the most recent developments concerning the application of sensory polymers in the detection and quantification of different target species. We will firstly describe the main polymers that are being employed as sensory polymers, including, for example, conducting or acrylate-based polymers. In the second part of the review, we will briefly describe the different mechanisms of detection and the target species, such as metal cations and anions, explosives, and biological and biomedical substances. To conclude, we will describe the advancements in recent years concerning the fabrication of micro and nano sensory devices based on smart polymers, with a bibliographic revision of the research work published between 2005 and today, with special emphasis on research work presented since 2010. A final section exposing the perspectives and challenges of this interesting research line will end the present review article.FEDER (Fondo Europeo de DEsarrollo Regional), and both the Spanish Ministerio de Economía, Industria y Competitividad (MAT2014-54137-R, MAT2017-84501-R) and the Consejería de Educación–Junta de Castilla y León (BU061U16
    • 

    corecore