596 research outputs found

    Service discovery and negotiation with COWS

    Get PDF
    To provide formal foundations to current (web) services technologies, we put forward using COWS, a process calculus for specifying, combining and analysing services, as a uniform formalism for modelling all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, deployment and execution. In this paper, we show that constraints and operations on them can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a service-based web hosting provider

    Predicting global usages of resources endowed with local policies

    Full text link
    The effective usages of computational resources are a primary concern of up-to-date distributed applications. In this paper, we present a methodology to reason about resource usages (acquisition, release, revision, ...), and therefore the proposed approach enables to predict bad usages of resources. Keeping in mind the interplay between local and global information occurring in the application-resource interactions, we model resources as entities with local policies and global properties governing the overall interactions. Formally, our model takes the shape of an extension of pi-calculus with primitives to manage resources. We develop a Control Flow Analysis computing a static approximation of process behaviour and therefore of the resource usages.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    A new penalized nonnegative third order tensor decomposition using a block coordinate proximal gradient approach: application to 3D fluorescence spectroscopy

    No full text
    International audienceIn this article, we address the problem of tensor factorization subject to certain constraints. We focus on the Canonical Polyadic Decomposition (CPD) also known as Parafac. The interest of this multi-linear decomposition coupled with 3D fluorescence spectroscopy is now well established in the fields of environmental data analysis, biochemistry and chemistry. When real experimental data (possibly corrupted by noise) are processed, the actual rank of the " observed " tensor is generally unknown. Moreover, when the amount of data is very large, this inverse problem may become numerically ill-posed and consequently hard to solve. The use of proper constraints reflecting some a priori knowledge about the latent (or hidden) tracked variables and/or additional information through the addition of penalty functions can prove very helpful in estimating more relevant components rather than totally arbitrary ones. The counterpart is that the cost functions that have to be considered can be non convex and sometimes even non differentiable making their optimization more difficult, leading to a higher computing time and a slower convergence speed. Block alternating proximal approaches offer a rigorous and flexible framework to properly address that problem since they are applicable to a large class of cost functions while remaining quite easy to implement. Here, we suggest a new block coordinate variable metric forward-backward method which can be seen as a special case of Majorize-Minimize (MM) approaches to derive a new penalized nonnegative third order CPD algorithm. Its interest, efficiency, robustness and flexibility are illustrated thanks to computer simulations carried out on both simulated and real experimental 3D fluorescence spectroscopy data
    corecore