1,084 research outputs found

    Stability of the Greedy Algorithm on the Circle

    Get PDF
    We consider a single-server system with service stations in each point of the circle. Customers arrive after exponential times at uniformly-distributed locations. The server moves at finite speed and adopts a greedy routing mechanism. It was conjectured by Coffman and Gilbert in~1987 that the service rate exceeding the arrival rate is a sufficient condition for the system to be positive recurrent, for any value of the speed. In this paper we show that the conjecture holds true

    Greedy walk on the real line

    Full text link
    We consider a self-interacting process described in terms of a single-server system with service stations at each point of the real line. The customer arrivals are given by a Poisson point processes on the space-time half plane. The server adopts a greedy routing mechanism, traveling toward the nearest customer, and ignoring new arrivals while in transit. We study the trajectories of the server and show that its asymptotic position diverges logarithmically in time.Comment: Published at http://dx.doi.org/10.1214/13-AOP898 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Queuing for an infinite bus line and aging branching process

    Full text link
    We study a queueing system with Poisson arrivals on a bus line indexed by integers. The buses move at constant speed to the right and the time of service per customer getting on the bus is fixed. The customers arriving at station i wait for a bus if this latter is less than d\_i stations before, where d\_i is non-decreasing. We determine the asymptotic behavior of a single bus and when two buses eventually coalesce almost surely by coupling arguments. Three regimes appear, two of which leading to a.s. coalescing of the buses.The approach relies on a connection with aged structured branching processes with immigration and varying environment. We need to prove a Kesten Stigum type theorem, i.e. the a.s. convergence of the successive size of the branching process normalized by its mean. The technics developed combines a spine approach for multitype branching process in varying environment and geometric ergodicity along the spine to control the increments of the normalized process

    Stability criteria for controlled queueing networks

    Get PDF
    We give criteria for the stability of a very general queueing model under different levels of control. A complete classification of stability (or positive recurrence), transience and null-recurrence is presented for the two queue model. The stability and instability results are extended for models with N > 3 queues. We look at a broad class of models which can have the following features: Customers arrive at one, several or all of the queues from the outside with exponential inter arrival times. We often have the case where a arrival stream can be routed so that under different routing schemes each queue can have external arrivals, i.e. we assume we have some control over the routing of the arrivals. We also consider models where the arrival streams are fixed. We view the service in a more abstract way, in that we allow a number к of different service configurations. Under every such service configuration service is provided to some or all of the queues, length of service time can change from one service configuration to another and we can change from one configuration to another according two some control policy. The service times are assumed to be exponentially distributed. The queueing models we consider are networks where, after completion at one queue, a customer might be fed back into another queue where it will be served another time often under with a different service time. These feedback probabilities change with the service configurations. Our interest is in different types of control policies which allow us to change the routing of arrivals and configurations of the service from time to time so that the controlled queue length process (which in most cases is Markov) is stable. The semi-martingale or Lyapunov function methods we use give necessary and sufficient conditions for the stability classification. We will look at some two queue models with different inter arrival and service times where the queueing process is still Markov

    A Real-time Calculus Approach for Integrating Sporadic Events in Time-triggered Systems

    Full text link
    In time-triggered systems, where the schedule table is predefined and statically configured at design time, sporadic event-triggered (ET) tasks can only be handled within specially dedicated slots or when time-triggered (TT) tasks finish their execution early. We introduce a new paradigm for synthesizing TT schedules that guarantee the correct temporal behavior of TT tasks and the schedulability of sporadic ET tasks with arbitrary deadlines. The approach first expresses a constraint for the TT task schedule in the form of a maximal affine envelope that guarantees that as long as the schedule generation respects this envelope, all sporadic ET tasks meet their deadline. The second step consists of modeling this envelope as a burst limiting constraint and building the TT schedule via simulating a modified Least-Laxity-First (LLF) scheduler. Using this novel technique, we show that we achieve equal or better schedulability and a faster schedule generation for most use-cases compared to other approaches inspired by, e.g., hierarchical scheduling. Moreover, we present an extension to our method that finds the most favourable schedule for TT tasks with respect to ET schedulability, thus increasing the probability of the computed TT schedule remaining feasible when ET tasks are later added or changed
    • …
    corecore