4,389 research outputs found

    Applying Deep Machine Learning for psycho-demographic profiling of Internet users using O.C.E.A.N. model of personality

    Full text link
    In the modern era, each Internet user leaves enormous amounts of auxiliary digital residuals (footprints) by using a variety of on-line services. All this data is already collected and stored for many years. In recent works, it was demonstrated that it's possible to apply simple machine learning methods to analyze collected digital footprints and to create psycho-demographic profiles of individuals. However, while these works clearly demonstrated the applicability of machine learning methods for such an analysis, created simple prediction models still lacks accuracy necessary to be successfully applied for practical needs. We have assumed that using advanced deep machine learning methods may considerably increase the accuracy of predictions. We started with simple machine learning methods to estimate basic prediction performance and moved further by applying advanced methods based on shallow and deep neural networks. Then we compared prediction power of studied models and made conclusions about its performance. Finally, we made hypotheses how prediction accuracy can be further improved. As result of this work, we provide full source code used in the experiments for all interested researchers and practitioners in corresponding GitHub repository. We believe that applying deep machine learning for psycho-demographic profiling may have an enormous impact on the society (for good or worse) and provides means for Artificial Intelligence (AI) systems to better understand humans by creating their psychological profiles. Thus AI agents may achieve the human-like ability to participate in conversation (communication) flow by anticipating human opponents' reactions, expectations, and behavior

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy

    Unsupervised, Efficient and Semantic Expertise Retrieval

    Get PDF
    We introduce an unsupervised discriminative model for the task of retrieving experts in online document collections. We exclusively employ textual evidence and avoid explicit feature engineering by learning distributed word representations in an unsupervised way. We compare our model to state-of-the-art unsupervised statistical vector space and probabilistic generative approaches. Our proposed log-linear model achieves the retrieval performance levels of state-of-the-art document-centric methods with the low inference cost of so-called profile-centric approaches. It yields a statistically significant improved ranking over vector space and generative models in most cases, matching the performance of supervised methods on various benchmarks. That is, by using solely text we can do as well as methods that work with external evidence and/or relevance feedback. A contrastive analysis of rankings produced by discriminative and generative approaches shows that they have complementary strengths due to the ability of the unsupervised discriminative model to perform semantic matching.Comment: WWW2016, Proceedings of the 25th International Conference on World Wide Web. 201
    • …
    corecore