3,936 research outputs found

    Trading Safety Versus Performance: Rapid Deployment of Robotic Swarms with Robust Performance Constraints

    Full text link
    In this paper we consider a stochastic deployment problem, where a robotic swarm is tasked with the objective of positioning at least one robot at each of a set of pre-assigned targets while meeting a temporal deadline. Travel times and failure rates are stochastic but related, inasmuch as failure rates increase with speed. To maximize chances of success while meeting the deadline, a control strategy has therefore to balance safety and performance. Our approach is to cast the problem within the theory of constrained Markov Decision Processes, whereby we seek to compute policies that maximize the probability of successful deployment while ensuring that the expected duration of the task is bounded by a given deadline. To account for uncertainties in the problem parameters, we consider a robust formulation and we propose efficient solution algorithms, which are of independent interest. Numerical experiments confirming our theoretical results are presented and discussed

    Certainty equivalence and model uncertainty

    Get PDF
    Simon’s and Theil’s certainty equivalence property justifies a convenient algorithm for solving dynamic programming problems with quadratic objectives and linear transition laws: first, optimize under perfect foresight, then substitute optimal forecasts for unknown future values. A similar decomposition into separate optimization and forecasting steps prevails when a decision maker wants a decision rule that is robust to model misspecification. Concerns about model misspecification leave the first step of the algorithm intact and affect only the second step of forecasting the future. The decision maker attains robustness by making forecasts with a distorted model that twists probabilities relative to his approximating model. The appropriate twisting emerges from a two-player zero-sum dynamic game.
    corecore