31,472 research outputs found

    PRIORITIZED TASK SCHEDULING IN FOG COMPUTING

    Get PDF
    Cloud computing is an environment where virtual resources are shared among the many users over network. A user of Cloud services is billed according to pay-per-use model associated with this environment. To keep this bill to a minimum, efficient resource allocation is of great importance. To handle the many requests sent to Cloud by the clients, the tasks need to be processed according to the SLAs defined by the client. The increase in the usage of Cloud services on a daily basis has introduced delays in the transmission of requests. These delays can cause clients to wait for the response of the tasks beyond the deadline assigned. To overcome these concerns, Fog Computing is helpful as it is physically placed closer to the clients. This layer is placed between the client and the Cloud layer, and it reduces the delay in the transmission of the requests, processing and the response sent back to the client greatly. This paper discusses an algorithm which schedules tasks by calculating the priority of a task in the Fog layer. The tasks with higher priority are processed first so that the deadline is met, which makes the algorithm practical and efficient

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling
    corecore