1,784 research outputs found

    Enforcing Security and Assurance Properties in Cloud Environment

    Get PDF
    International audienceBefore deploying their infrastructure (resources, data, communications, ...) on a Cloud computing platform, companies want to be sure that it will be properly secured. At deployment time, the company provides a security policy describing its security requirements through a set of properties. Once its infrastructure deployed, the company want to be assured that this policy is applied and enforced. But describing and enforcing security properties and getting strong evidences of it is a complex task. To address this issue, in [1], we have proposed a language that can be used to express both security and assurance properties on distributed resources. Then, we have shown how these global properties can be cut into a set of properties to be enforced locally. In this paper, we show how these local properties can be used to automatically configure security mechanisms. Our language is context-based which allows it to be easily adapted to any resource naming systems e.g., Linux and Android (with SELinux) or PostgreSQL. Moreover, by abstracting low-level functionalities (e.g., deny write to a file) through capabilities, our language remains independent from the security mechanisms. These capabilities can then be combined into security and assurance properties in order to provide high-level functionalities, such as confidentiality or integrity. Furthermore, we propose a global architecture that receives these properties and automatically configures the security and assurance mechanisms accordingly. Finally, we express the security and assurance policies of an industrial environment for a commercialized product and show how its security is enforced

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation

    A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems

    Get PDF
    This paper provides a unifying view for the engineering of self-adaptive (SA) and self-organising (SO) systems. We first identify requirements for designing and building trustworthy self-adaptive and self-organising systems. Second, we propose a generic framework combining design-time and run-time features, which permit the definition and analysis at design-time of mechanisms that both ensure and constrain the run-time behaviour of an SA or SO system, thereby providing some assurance of its self-* capabilities. We show how this framework applies to both an SA and an SO system, and discuss several current proof-of-concept studies on the enabling technologies

    Supporting Management lnteraction and Composition of Self-Managed Cells

    No full text
    Management in ubiquitous systems cannot rely on human intervention or centralised decision-making functions because systems are complex and devices are inherently mobile and cannot refer to centralised management applications for reconfiguration and adaptation directives. Management must be devolved, based on local decision-making and feedback control-loops embedded in autonomous components. Previous work has introduced a Self-Managed Cell (SMC) as an infrastructure for building ubiquitous applications. An SMC consists of a set of hardware and software components that implement a policy-driven feedback control-loop. This allows SMCs to adapt continually to changes in their environment or in their usage requirements. Typical applications include body-area networks for healthcare monitoring, and communities of unmanned autonomous vehicles (UAVs) for surveillance and reconnaissance operations. Ubiquitous applications are typically formed from multiple interacting autonomous components, which establish peer-to-peer collaborations, federate and compose into larger structures. Components must interact to distribute management tasks and to enforce communication strategies. This thesis presents an integrated framework which supports the design and the rapid establishment of policy-based SMC interactions by systematically composing simpler abstractions as building elements of a more complex collaboration. Policy-based interactions are realised – subject to an extensible set of security functions – through the exchanges of interfaces, policies and events, and our framework was designed to support the specification, instantiation and reuse of patterns of interaction that prescribe the manner in which these exchanges are achieved. We have defined a library of patterns that provide reusable abstractions for the structure, task-allocation and communication aspects of an interaction, which can be individually combined for building larger policy-based systems in a methodical manner. We have specified a formal model to ensure the rigorous verification of SMC interactions before policies are deployed in physical devices. A prototype has been implemented that demonstrates the practical feasibility of our framework in constrained resources

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Autonomic Management of Large Clusters and Their Integration into the Grid

    Get PDF
    We present a framework for the co-ordinated, autonomic management of multiple clusters in a compute center and their integration into a Grid environment. Site autonomy and the automation of administrative tasks are prime aspects in this framework. The system behavior is continuously monitored in a steering cycle and appropriate actions are taken to resolve any problems. All presented components have been implemented in the course of the EU project DataGrid: The Lemon monitoring components, the FT fault-tolerance mechanism, the quattor system for software installation and configuration, the RMS job and resource management system, and the Gridification scheme that integrates clusters into the Grid

    SLA BASED FEDERATED E-MARITIME SERVICES

    Get PDF
    We consider a SOA based service engineering framework as a robust engineering approach to the elaboration and analysis of functional and quality requirements, as well the formal testing of architectural solutions of emerging e-maritime systemst. Autonomic systems and related architectural frameworks are considered towards engineering e-maritime services. E-maritime services’ interfaces, behavior, and service composition design and testing aspects are discussed. A SOA SLA approach is proposed so as to enable e-maritime service properties to be formally agreed, negotiated and offered over an e-maritime SOA platform
    • …
    corecore