541,670 research outputs found

    Policy Algebras for Hybrid Firewalls

    Get PDF
    Firewalls are a effective means of protecting a local system or network of systems from network-based security threats. In this paper, we propose a policy algebra framework for security policy enforcement in hybrid firewalls, ones that exist both in the network and on end systems. To preserve the security semantics, the policy algebras provide a formalism to compute addition, conjunction, subtraction, and summation on rule sets; it also defines the cost and risk functions associated with policy enforcement. Policy outsourcing triggers global cost minimization. We show that our framework can easily be extended to support packet filter firewall policies. Finally, we discuss special challenges and requirements for applying the policy algebra framework to MANETs

    A Uniform Formal Approach to Business and Access Control Models, Policies and their Combinations

    Get PDF
    Access control represents an important part of security in software systems, since access control policies determine which users of a software system have access to what objects and operations and under what constraints. One can view access control models as providing the basis for access control rules. Further, an access control policy can be seen as a combination of one or more rules, and one or more policies can be combined into a set of access control policies that control access to an entire system. The rules and resulting policies can be combined in many different ways, and the combination of rules and policies are included in policy languages. Approaches to access control (AC) policy languages, such as XACML, do not provide a formal representation for specifying rule- and policy-combining algorithms or for classifying and verifying properties of AC policies. In addition, there is no connection between the rules that form a policy and the general access control and business models on which those rules are based. Some authors propose formal representations for rule- and policy-combining algorithms. However, the proposed models are not expressive enough to represent formally classes of algorithms related to history of policy outcomes including ordered-permit-overrides, ordered-deny-overrides, and only-one-applicable. In fact, they are not able to express formally any algorithm that involves history including the class related to consensus such as weak-consensus, weak-majority, strong-consensus, strong-majority, and super-majoritypermit. In addition, some other authors propose a formal representation but do not present an approach and automated support for the formal verification of any classes of combining algorithms. The work presented in this thesis provides a uniform formal approach to business and access control models, policies and their combinations. The research involves a new formal representation for access control rules, policies, and their combination and supports formal verification. In addition, the approach explicitly connects the rules to the underlying access control model. Specically, the approach • provides a common representation for systematically describing and integrating business processes, access control models, their rules and policies, • expresses access control rules using an underlying access control model based on an existing augmented business modeling notation, • can express and verify formally all known policy- and rule-combining algorithms, a result not seen in the literature, • supports a classification of relevant access control properties that can be verified against policies and their combinations, and • supports automated formal verification of single policies and combined policy sets based on model checking. Finally, the approach is applied to an augmented version of the conference management system, a well-known example from the literature. Several properties, whose verification was not possible by prior approaches, such as ones involving history of policy outcomes, are verified in this thesis

    On Properties of Policy-Based Specifications

    Get PDF
    The advent of large-scale, complex computing systems has dramatically increased the difficulties of securing accesses to systems' resources. To ensure confidentiality and integrity, the exploitation of access control mechanisms has thus become a crucial issue in the design of modern computing systems. Among the different access control approaches proposed in the last decades, the policy-based one permits to capture, by resorting to the concept of attribute, all systems' security-relevant information and to be, at the same time, sufficiently flexible and expressive to represent the other approaches. In this paper, we move a step further to understand the effectiveness of policy-based specifications by studying how they permit to enforce traditional security properties. To support system designers in developing and maintaining policy-based specifications, we formalise also some relevant properties regarding the structure of policies. By means of a case study from the banking domain, we present real instances of such properties and outline an approach towards their automatised verification.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Refinement for Administrative Policies

    Get PDF
    Flexibility of management is an important requisite for access control systems as it allows users to adapt the access control system in accordance with practical requirements. This paper builds on earlier work where we defined administrative policies for a general class of RBAC models. We present a formal definition of administrative refinnement and we show that there is an ordering for administrative privileges which yields administrative refinements of policies. We argue (by giving an example) that this privilege ordering can be very useful in practice, and we prove that the privilege ordering is tractable

    Formalisation and Implementation of the XACML Access Control Mechanism

    Get PDF
    We propose a formal account of XACML, an OASIS standard adhering to the Policy Based Access Control model for the specifica- tion and enforcement of access control policies. To clarify all ambiguous and intricate aspects of XACML, we provide it with a more manageable alternative syntax and with a solid semantic ground. This lays the basis for developing tools and methodologies which allow software engineers to easily and precisely regulate access to resources using policies. To demonstrate feasibility and effectiveness of our approach, we provide a software tool, supporting the specification and evaluation of policies and access requests, whose implementation fully relies on our formal development
    • …
    corecore