1,191 research outputs found

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Reinforcement Learning and Bandits for Speech and Language Processing: Tutorial, Review and Outlook

    Full text link
    In recent years, reinforcement learning and bandits have transformed a wide range of real-world applications including healthcare, finance, recommendation systems, robotics, and last but not least, the speech and natural language processing. While most speech and language applications of reinforcement learning algorithms are centered around improving the training of deep neural networks with its flexible optimization properties, there are still many grounds to explore to utilize the benefits of reinforcement learning, such as its reward-driven adaptability, state representations, temporal structures and generalizability. In this survey, we present an overview of recent advancements of reinforcement learning and bandits, and discuss how they can be effectively employed to solve speech and natural language processing problems with models that are adaptive, interactive and scalable.Comment: To appear in Expert Systems with Applications. Accompanying INTERSPEECH 2022 Tutorial on the same topic. Including latest advancements in large language models (LLMs

    Evolutionary Reinforcement Learning of Spoken Dialogue Strategies

    Get PDF
    Institute for Communicating and Collaborative SystemsFrom a system developer's perspective, designing a spoken dialogue system can be a time-consuming and difficult process. A developer may spend a lot of time anticipating how a potential user might interact with the system and then deciding on the most appropriate system response. These decisions are encoded in a dialogue strategy, essentially a mapping between anticipated user inputs and appropriate system outputs. To reduce the time and effort associated with developing a dialogue strategy, recent work has concentrated on modelling the development of a dialogue strategy as a sequential decision problem. Using this model, reinforcement learning algorithms have been employed to generate dialogue strategies automatically. These algorithms learn strategies by interacting with simulated users. Some progress has been made with this method but a number of important challenges remain. For instance, relatively little success has been achieved with the large state representations that are typical of real-life systems. Another crucial issue is the time and effort associated with the creation of simulated users. In this thesis, I propose an alternative to existing reinforcement learning methods of dialogue strategy development. More specifically, I explore how XCS, an evolutionary reinforcement learning algorithm, can be used to find dialogue strategies that cover large state spaces. Furthermore, I suggest that hand-coded simulated users are sufficient for the learning of useful dialogue strategies. I argue that the use of evolutionary reinforcement learning and hand-coded simulated users is an effective approach to the rapid development of spoken dialogue strategies. Finally, I substantiate this claim by evaluating a learned strategy with real users. Both the learned strategy and a state-of-the-art hand-coded strategy were integrated into an end-to-end spoken dialogue system. The dialogue system allowed real users to make flight enquiries using a live database for an Edinburgh-based airline. The performance of the learned and hand-coded strategies were compared. The evaluation results show that the learned strategy performs as well as the hand-coded one (81% and 77% task completion respectively) but takes much less time to design (two days instead of two weeks). Moreover, the learned strategy compares favourably with previous user evaluations of learned strategies
    • ā€¦
    corecore