8,324 research outputs found

    Multi-Agent Deep Reinforcement Learning for Large-scale Traffic Signal Control

    Full text link
    Reinforcement learning (RL) is a promising data-driven approach for adaptive traffic signal control (ATSC) in complex urban traffic networks, and deep neural networks further enhance its learning power. However, centralized RL is infeasible for large-scale ATSC due to the extremely high dimension of the joint action space. Multi-agent RL (MARL) overcomes the scalability issue by distributing the global control to each local RL agent, but it introduces new challenges: now the environment becomes partially observable from the viewpoint of each local agent due to limited communication among agents. Most existing studies in MARL focus on designing efficient communication and coordination among traditional Q-learning agents. This paper presents, for the first time, a fully scalable and decentralized MARL algorithm for the state-of-the-art deep RL agent: advantage actor critic (A2C), within the context of ATSC. In particular, two methods are proposed to stabilize the learning procedure, by improving the observability and reducing the learning difficulty of each local agent. The proposed multi-agent A2C is compared against independent A2C and independent Q-learning algorithms, in both a large synthetic traffic grid and a large real-world traffic network of Monaco city, under simulated peak-hour traffic dynamics. Results demonstrate its optimality, robustness, and sample efficiency over other state-of-the-art decentralized MARL algorithms

    Adaptive Variance for Changing Sparse-Reward Environments

    Full text link
    Robots that are trained to perform a task in a fixed environment often fail when facing unexpected changes to the environment due to a lack of exploration. We propose a principled way to adapt the policy for better exploration in changing sparse-reward environments. Unlike previous works which explicitly model environmental changes, we analyze the relationship between the value function and the optimal exploration for a Gaussian-parameterized policy and show that our theory leads to an effective strategy for adjusting the variance of the policy, enabling fast adapt to changes in a variety of sparse-reward environments.Comment: Accepted as a conference at International Conference on Robotics and Automation(ICRA) 201

    A Survey and Critique of Multiagent Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has led to a dramatic increase in the number of applications and methods. Recent works have explored learning beyond single-agent scenarios and have considered multiagent learning (MAL) scenarios. Initial results report successes in complex multiagent domains, although there are several challenges to be addressed. The primary goal of this article is to provide a clear overview of current multiagent deep reinforcement learning (MDRL) literature. Additionally, we complement the overview with a broader analysis: (i) we revisit previous key components, originally presented in MAL and RL, and highlight how they have been adapted to multiagent deep reinforcement learning settings. (ii) We provide general guidelines to new practitioners in the area: describing lessons learned from MDRL works, pointing to recent benchmarks, and outlining open avenues of research. (iii) We take a more critical tone raising practical challenges of MDRL (e.g., implementation and computational demands). We expect this article will help unify and motivate future research to take advantage of the abundant literature that exists (e.g., RL and MAL) in a joint effort to promote fruitful research in the multiagent community.Comment: Under review since Oct 2018. Earlier versions of this work had the title: "Is multiagent deep reinforcement learning the answer or the question? A brief survey

    Managing engineering systems with large state and action spaces through deep reinforcement learning

    Full text link
    Decision-making for engineering systems can be efficiently formulated as a Markov Decision Process (MDP) or a Partially Observable MDP (POMDP). Typical MDP and POMDP solution procedures utilize offline knowledge about the environment and provide detailed policies for relatively small systems with tractable state and action spaces. However, in large multi-component systems the sizes of these spaces easily explode, as system states and actions scale exponentially with the number of components, whereas environment dynamics are difficult to be described in explicit forms for the entire system and may only be accessible through numerical simulators. In this work, to address these issues, an integrated Deep Reinforcement Learning (DRL) framework is introduced. The Deep Centralized Multi-agent Actor Critic (DCMAC) is developed, an off-policy actor-critic DRL approach, providing efficient life-cycle policies for large multi-component systems operating in high-dimensional spaces. Apart from deep function approximations that parametrize large state spaces, DCMAC also adopts a factorized representation of the system actions, being able to designate individualized component- and subsystem-level decisions, while maintaining a centralized value function for the entire system. DCMAC compares well against Deep Q-Network (DQN) solutions and exact policies, where applicable, and outperforms optimized baselines that are based on time-based, condition-based and periodic policies

    Stein Variational Policy Gradient

    Full text link
    Policy gradient methods have been successfully applied to many complex reinforcement learning problems. However, policy gradient methods suffer from high variance, slow convergence, and inefficient exploration. In this work, we introduce a maximum entropy policy optimization framework which explicitly encourages parameter exploration, and show that this framework can be reduced to a Bayesian inference problem. We then propose a novel Stein variational policy gradient method (SVPG) which combines existing policy gradient methods and a repulsive functional to generate a set of diverse but well-behaved policies. SVPG is robust to initialization and can easily be implemented in a parallel manner. On continuous control problems, we find that implementing SVPG on top of REINFORCE and advantage actor-critic algorithms improves both average return and data efficiency

    Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning

    Full text link
    Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations or unseen situations cause proficient but specialized policies to fail at test time. Given that it is impractical to train separate policies to accommodate all situations the agent may see in the real world, this work proposes to learn how to quickly and effectively adapt online to new tasks. To enable sample-efficient learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach uses meta-learning to train a dynamics model prior such that, when combined with recent data, this prior can be rapidly adapted to the local context. Our experiments demonstrate online adaptation for continuous control tasks on both simulated and real-world agents. We first show simulated agents adapting their behavior online to novel terrains, crippled body parts, and highly-dynamic environments. We also illustrate the importance of incorporating online adaptation into autonomous agents that operate in the real world by applying our method to a real dynamic legged millirobot. We demonstrate the agent's learned ability to quickly adapt online to a missing leg, adjust to novel terrains and slopes, account for miscalibration or errors in pose estimation, and compensate for pulling payloads.Comment: First 2 authors contributed equally. Website: https://sites.google.com/berkeley.edu/metaadaptivecontro

    Continuous control with deep reinforcement learning

    Full text link
    We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies end-to-end: directly from raw pixel inputs.Comment: 10 pages + supplementar

    Neuronal Circuit Policies

    Full text link
    We propose an effective way to create interpretable control agents, by re-purposing the function of a biological neural circuit model, to govern simulated and real world reinforcement learning (RL) test-beds. We model the tap-withdrawal (TW) neural circuit of the nematode, C. elegans, a circuit responsible for the worm's reflexive response to external mechanical touch stimulations, and learn its synaptic and neuronal parameters as a policy for controlling basic RL tasks. We also autonomously park a real rover robot on a pre-defined trajectory, by deploying such neuronal circuit policies learned in a simulated environment. For reconfiguration of the purpose of the TW neural circuit, we adopt a search-based RL algorithm. We show that our neuronal policies perform as good as deep neural network policies with the advantage of realizing interpretable dynamics at the cell level

    Multi-Agent Actor-Critic with Generative Cooperative Policy Network

    Full text link
    We propose an efficient multi-agent reinforcement learning approach to derive equilibrium strategies for multi-agents who are participating in a Markov game. Mainly, we are focused on obtaining decentralized policies for agents to maximize the performance of a collaborative task by all the agents, which is similar to solving a decentralized Markov decision process. We propose to use two different policy networks: (1) decentralized greedy policy network used to generate greedy action during training and execution period and (2) generative cooperative policy network (GCPN) used to generate action samples to make other agents improve their objectives during training period. We show that the samples generated by GCPN enable other agents to explore the policy space more effectively and favorably to reach a better policy in terms of achieving the collaborative tasks.Comment: 10 pages, total 9 figures including all sub-figure

    Bayesian Transfer Reinforcement Learning with Prior Knowledge Rules

    Full text link
    We propose a probabilistic framework to directly insert prior knowledge in reinforcement learning (RL) algorithms by defining the behaviour policy as a Bayesian posterior distribution. Such a posterior combines task specific information with prior knowledge, thus allowing to achieve transfer learning across tasks. The resulting method is flexible and it can be easily incorporated to any standard off-policy and on-policy algorithms, such as those based on temporal differences and policy gradients. We develop a specific instance of this Bayesian transfer RL framework by expressing prior knowledge as general deterministic rules that can be useful in a large variety of tasks, such as navigation tasks. Also, we elaborate more on recent probabilistic and entropy-regularised RL by developing a novel temporal learning algorithm and show how to combine it with Bayesian transfer RL. Finally, we demonstrate our method for solving mazes and show that significant speed ups can be obtained.Comment: 11 pages, 2 figure
    • …
    corecore