90,990 research outputs found

    Polarization-Free Generators and the S-Matrix

    Full text link
    Polarization-free generators, i.e. ``interacting'' Heisenberg operators which are localized in wedge-shaped regions of Minkowski space and generate single particle states from the vacuum, are a novel tool in the analysis and synthesis of two-dimensional integrable quantum field theories. In the present article, the status of these generators is analyzed in a general setting. It is shown that such operators exist in any theory and in any number of spacetime dimensions. But in more than two dimensions they have rather delicate domain properties in the presence of interaction. If, for example, they are defined and temperate on a translation-invariant, dense domain, then the underlying theory yields only trivial scattering. In two-dimensional theories, these domain properties are consistent with non-trivial interaction, but they exclude particle production. Thus the range of applications of polarization-free generators seems to be limited to the realm of two-dimensional theories.Comment: Dedicated to the memory of Harry Lehmann, 19 pages; revised version (proof of Lemma 3.4 corrected

    Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Full text link
    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 11, 2020 and 100100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devicesComment: Published version, including supplementary materia

    Temporal multimode storage of entangled photon pairs

    Full text link
    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

    Full text link
    We investigate polarization memory effects in single-crystal CuFeO2, which has a magnetically-induced ferroelectric phase at low temperatures and applied B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric phase, we find that the nonpolar collinear antiferromagnetic ground state at B = 0 T retains a strong memory of the polarization magnitude and direction, such that upon re-entering the ferroelectric phase a net polarization of comparable magnitude to the initial polarization is recovered in the absence of external bias. This memory effect is very robust: in pulsed-magnetic-field measurements, several pulses into the ferroelectric phase with reverse bias are required to switch the polarization direction, with significant switching only seen after the system is driven out of the ferroelectric phase and ground state either magnetically (by application of B > 13 T) or thermally. The memory effect is also largely insensitive to the magnetoelastic domain composition, since no change in the memory effect is observed for a sample driven into a single-domain state by application of stress in the [1-10] direction. On the basis of Monte Carlo simulations of the ground state spin configurations, we propose that the memory effect is due to the existence of helical domain walls within the nonpolar collinear antiferromagnetic ground state, which would retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure

    Mesoscopic non-equilibrium thermodynamics approach to non-Debye dielectric relaxation

    Full text link
    Mesoscopic non-equilibrium thermodynamics is used to formulate a model describing non-homogeneous and non-Debye dielectric relaxation. The model is presented in terms of a Fokker-Planck equation for the probability distribution of non-interacting polar molecules in contact with a heat bath and in the presence of an external time-dependent electric field. Memory effects are introduced in the Fokker-Planck description through integral relations containing memory kernels, which in turn are used to establish a connection with fractional Fokker-Planck descriptions. The model is developed in terms of the evolution equations for the first two moments of the distribution function. These equations are solved by following a perturbative method from which the expressions for the complex susceptibilities are obtained as a functions of the frequency and the wave number. Different memory kernels are considered and used to compare with experiments of dielectric relaxation in glassy systems. For the case of Cole-Cole relaxation, we infer the distribution of relaxation times and its relation with an effective distribution of dipolar moments that can be attributed to different segmental motions of the polymer chains in a melt.Comment: 33 pages, 6 figure

    Long-Distance High-Fidelity Teleportation Using Singlet States

    Get PDF
    A quantum communication system is proposed that uses polarization-entangled photons and trapped-atom quantum memories. This system is capable of long-distance, high-fidelity teleportation, and long-duration quantum storage.Comment: 8 pages, 5 figure
    • …
    corecore