81 research outputs found

    Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR

    Get PDF
    Monitoring and detection of ships and oil spills using synthetic aperture radar (SAR) have received a considerable attention over the past few years, notably due to the wide area coverage and day and night all-weather capabilities of SAR systems. Among different polarimetric SAR modes, dual-pol SAR data are widely used for monitoring large ocean and coastal areas. The degree of polarization (DoP) is a fundamental quantity characterizing a partially polarized electromagnetic field, with significantly less computational complexity, readily adaptable for on-board implementation, compared with other well-known polarimetric discriminators. The performance of the DoP is studied for joint ship and oil-spill detection under different polarizations in hybrid/compact and linear dual-pol SAR imagery. Experiments are performed on RADARSAT-2 -band polarimetric data sets, over San Francisco Bay, and -band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico

    Averaged Stokes Vector Based Polarimetric SAR Data Interpretation

    Get PDF
    In this paper, we propose a new polarimetric synthetic aperture radar (SAR) data interpretation method based on a locally averaged Stokes vector. We first propose a method to extract discriminators from all three components of the averaged Stokes vector. Based on the extracted discriminators, we build four physical interpretation layers with ascending priorities, i.e., the basic structure layer, the low-coherence targets layer, the man-made targets layer, and the low-backscattering targets layer. An intuitive final image can be generated by simply stacking the four layers in the priority order. We test the performance of the proposed method over Advanced Land Observing Satellite Phased Array type L-band SAR (ALOS-PALSAR) data. Experimental results show that the proposed method has high interpretation performance, particularly for skew-aligned or randomly distributed buildings and isolated man-made targets such as bridges

    Multi-source Remote Sensing for Forest Characterization and Monitoring

    Full text link
    As a dominant terrestrial ecosystem of the Earth, forest environments play profound roles in ecology, biodiversity, resource utilization, and management, which highlights the significance of forest characterization and monitoring. Some forest parameters can help track climate change and quantify the global carbon cycle and therefore attract growing attention from various research communities. Compared with traditional in-situ methods with expensive and time-consuming field works involved, airborne and spaceborne remote sensors collect cost-efficient and consistent observations at global or regional scales and have been proven to be an effective way for forest monitoring. With the looming paradigm shift toward data-intensive science and the development of remote sensors, remote sensing data with higher resolution and diversity have been the mainstream in data analysis and processing. However, significant heterogeneities in the multi-source remote sensing data largely restrain its forest applications urging the research community to come up with effective synergistic strategies. The work presented in this thesis contributes to the field by exploring the potential of the Synthetic Aperture Radar (SAR), SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), Polarimetric SAR Interferometry (PolInSAR), Light Detection and Ranging (LiDAR), and multispectral remote sensing in forest characterization and monitoring from three main aspects including forest height estimation, active fire detection, and burned area mapping. First, the forest height inversion is demonstrated using airborne L-band dual-baseline repeat-pass PolInSAR data based on modified versions of the Random Motion over Ground (RMoG) model, where the scattering attenuation and wind-derived random motion are described in conditions of homogeneous and heterogeneous volume layer, respectively. A boreal and a tropical forest test site are involved in the experiment to explore the flexibility of different models over different forest types and based on that, a leveraging strategy is proposed to boost the accuracy of forest height estimation. The accuracy of the model-based forest height inversion is limited by the discrepancy between the theoretical models and actual scenarios and exhibits a strong dependency on the system and scenario parameters. Hence, high vertical accuracy LiDAR samples are employed to assist the PolInSAR-based forest height estimation. This multi-source forest height estimation is reformulated as a pan-sharpening task aiming to generate forest heights with high spatial resolution and vertical accuracy based on the synergy of the sparse LiDAR-derived heights and the information embedded in the PolInSAR data. This process is realized by a specifically designed generative adversarial network (GAN) allowing high accuracy forest height estimation less limited by theoretical models and system parameters. Related experiments are carried out over a boreal and a tropical forest to validate the flexibility of the method. An automated active fire detection framework is proposed for the medium resolution multispectral remote sensing data. The basic part of this framework is a deep-learning-based semantic segmentation model specifically designed for active fire detection. A dataset is constructed with open-access Sentinel-2 imagery for the training and testing of the deep-learning model. The developed framework allows an automated Sentinel-2 data download, processing, and generation of the active fire detection results through time and location information provided by the user. Related performance is evaluated in terms of detection accuracy and processing efficiency. The last part of this thesis explored whether the coarse burned area products can be further improved through the synergy of multispectral, SAR, and InSAR features with higher spatial resolutions. A Siamese Self-Attention (SSA) classification is proposed for the multi-sensor burned area mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by different test sites, feature sources, and classification methods to assess the improvements achieved by the proposed method. All developed methods are validated with extensive processing of multi-source data acquired by Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Land, Vegetation, and Ice Sensor (LVIS), PolSARproSim+, Sentinel-1, and Sentinel-2. I hope these studies constitute a substantial contribution to the forest applications of multi-source remote sensing

    A deep learning solution for height estimation on a forested area based on Pol-TomoSAR data

    Get PDF
    Forest height and underlying terrain reconstruction is one of the main aims in dealing with forested areas. Theoretically, synthetic aperture radar tomography (TomoSAR) offers the possibility to solve the layover problem, making it possible to estimate the elevation of scatters located in the same resolution cell. This article describes a deep learning approach, named tomographic SAR neural network (TSNN), which aims at reconstructing forest and ground height using multipolarimetric multibaseline (MPMB) SAR data and light detection and ranging (LiDAR)-based data. The reconstruction of the forest and ground height is formulated as a classification problem, in which TSNN, a feedforward network, is trained using covariance matrix elements as input vectors and quantized LiDAR-based data as the reference. In our work, TSNN is trained and tested with P-band MPMB data acquired by ONERA over Paracou region of French Guiana in the frame of the European Space Agency's campaign TROPISAR and LiDAR-based data provided by the French Agricultural Research Center. The novelty of the proposed TSNN is related to its ability to estimate the height with a high agreement with LiDAR-based measurement and actual height with no requirement for phase calibration. Experimental results of different covariance window sizes are included to demonstrate that TSNN conducts height measurement with high spatial resolution and vertical accuracy outperforming the other two TomoSAR methods. Moreover, the conducted experiments on the effects of phase errors in different ranges show that TSNN has a good tolerance for small errors and is still able to precisely reconstruct forest heights

    MEDSAT: A Small Satellite for Malaria Early Warning and Control

    Get PDF
    This paper presents the design for a low cost, light satellite used to aid in the control of vector-borne diseases like malaria. The 340 kg satellite contains both a synthetic aperture radar and a visual/infrared multispectral scanner for remotely sensing the region of interest. Most of the design incorporates well established technology, but innovative features include the Pegasus launch vehicle, low mass and volume SAR and VIS/IR sensors, integrated design, low power SAR operation, microprocessor power system control, and advanced data compression and storage. This paper describes the main design considerations of the project which include, the remote sensing task, implementation for malaria control, launch vehicle, orbit, satellite bus, and satellite Subsystems

    Estimation of the Degree of Polarization in Polarimetric SAR Imagery : Principles and Applications

    Get PDF
    Les radars Ă  synthĂšse d’ouverture (RSO) polarimĂ©triques sont devenus incontournables dans le domaine de la tĂ©lĂ©dĂ©tection, grĂące Ă  leur zone de couverture Ă©tendue, ainsi que leur capacitĂ© Ă  acquĂ©rir des donnĂ©es dans n’importe quelles conditions atmosphĂ©riques de jour comme de nuit. Au cours des trois derniĂšres dĂ©cennies, plusieurs RSO polarimĂ©triques ont Ă©tĂ© utilisĂ©s portant une variĂ©tĂ© de modes d’imagerie, tels que la polarisation unique, la polarisation double et Ă©galement des modes dits pleinement polarimĂ©triques. GrĂące aux recherches rĂ©centes, d’autres modes alternatifs, tels que la polarisation hybride et compacte, ont Ă©tĂ© proposĂ©s pour les futures missions RSOs. Toutefois, un dĂ©bat anime la communautĂ© de la tĂ©lĂ©dĂ©tection quant Ă  l’utilitĂ© des modes alternatifs et quant au compromis entre la polarimĂ©trie double et la polarimĂ©trie totale. Cette thĂšse contribue Ă  ce dĂ©bat en analysant et comparant ces diffĂ©rents modes d’imagerie RSO dans une variĂ©tĂ© d’applications, avec un accent particulier sur la surveillance maritime (la dĂ©tection des navires et de marĂ©es noires). Pour nos comparaisons, nous considĂ©rons un paramĂštre fondamental, appelĂ© le degrĂ© de polarisation (DoP). Ce paramĂštre scalaire a Ă©tĂ© reconnu comme l’un des paramĂštres les plus pertinents pour caractĂ©riser les ondes Ă©lectromagnĂ©tiques partiellement polarisĂ©es. A l’aide d’une analyse statistique dĂ©taillĂ©e sur les images polarimĂ©triques RSO, nous proposons des estimateurs efficaces du DoP pour les systĂšmes d’imagerie cohĂ©rente et incohĂ©rente. Ainsi, nous Ă©tendons la notion de DoP aux diffĂ©rents modes d’imagerie polarimĂ©trique hybride et compacte. Cette Ă©tude comparative rĂ©alisĂ©e dans diffĂ©rents contextes d’application dĂ©gage des propriĂ©tĂ©s permettant de guider le choix parmi les diffĂ©rents modes polarimĂ©triques. Les expĂ©riences sont effectuĂ©es sur les donnĂ©es polarimĂ©triques provenant du satellite Canadian RADARSAT-2 et le RSO aĂ©roportĂ© AmĂ©ricain AirSAR, couvrant divers types de terrains tels que l’urbain, la vĂ©gĂ©tation et l’ocĂ©an. Par ailleurs nous rĂ©alisons une Ă©tude dĂ©taillĂ©e sur les potentiels du DoP pour la dĂ©tection et la reconnaissance des marĂ©es noires basĂ©e sur les acquisitions rĂ©centes d’UAVSAR, couvrant la catastrophe de Deepwater Horizon dans le golfe du Mexique. ABSTRACT : Polarimetric Synthetic Aperture Radar (SAR) systems have become highly fruitful thanks to their wide area coverage and day and night all-weather capabilities. Several polarimetric SARs have been flown over the last few decades with a variety of polarimetric SAR imaging modes; traditional ones are linear singleand dual-pol modes. More sophisticated ones are full-pol modes. Other alternative modes, such as hybrid and compact dual-pol, have also been recently proposed for future SAR missions. The discussion is vivid across the remote sensing society about both the utility of such alternative modes, and also the trade-off between dual and full polarimetry. This thesis contributes to that discussion by analyzing and comparing different polarimetric SAR modes in a variety of geoscience applications, with a particular focus on maritime monitoring and surveillance. For our comparisons, we make use of a fundamental, physically related discriminator called the Degree of Polarization (DoP). This scalar parameter has been recognized as one of the most important parameters characterizing a partially polarized electromagnetic wave. Based on a detailed statistical analysis of polarimetric SAR images, we propose efficient estimators of the DoP for both coherent and in-coherent SAR systems. We extend the DoP concept to different hybrid and compact SAR modes and compare the achieved performance with different full-pol methods. We perform a detailed study of vessel detection and oil-spill recognition, based on linear and hybrid/compact dual-pol DoP, using recent data from the Deepwater Horizon oil-spill, acquired by the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Extensive experiments are also performed over various terrain types, such as urban, vegetation, and ocean, using the data acquired by the Canadian RADARSAT-2 and the NASA/JPL Airborne SAR (AirSAR) system

    Statistical comparison of SAR backscatter from icebergs embedded in sea ice and in open water using RADARSAT-2 images of in Newfoundland waters and the Davis Strait

    Get PDF
    Icebergs are considered a threat to marine operations. Satellite monitoring of icebergs is one option to aid in the development of iceberg hazard maps. Satellite synthetic aperture radar (SAR) is an obvious choice because of its relative weather independence, day and night operation. Nonetheless, the detection of icebergs in SAR can be a challenge, particularly with high iceberg areal density, heterogeneous background clutter and the presence of sea ice. This thesis investigates and compares polarimetric signatures of icebergs embedded in sea ice and icebergs in open water. In this thesis, RADARSAT-2 images have been used for analysis, which was acquired over locations near the coastline (approximately 3-35 km) of the islands of Newfoundland and Greenland. All icebergs considered here are in the lower incident angle range (below 30 degrees) of the SAR acquisition geometry. For analysis, polarimetry parameters such as co- (HH) and cross- (HV) polarization and several decomposition techniques, specifically Pauli, Freeman-Durden, Yamaguchi, Cloud-Pottier and van Zyl classification, have been used to determine the polarimetric signatures of icebergs and sea ice. Statistical hypothesis tests were used to determine the differences among backscatters from different icebergs. Statistical results tend to show a dominant surface scattering mechanism for icebergs. Moreover, icebergs in open water produce larger volume scatter than icebergs in sea ice, while icebergs in sea ice produce larger surface scatter than icebergs in open water. In addition, there appear to be minor observable differences between icebergs in Greenland and icebergs in Newfoundland
    • 

    corecore