361 research outputs found

    CFAR Edge Detector for Polarimetric SAR Images

    Get PDF
    Abstract—Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polarimetric SAR images is presented using a newly developed test statistic in the complex Wishart distribution to test for equality of covariance matrices. The new edge detector can be applied to a wide range of SAR data from single-channel intensity data to multifrequency and/or multitemporal polarimetric SAR data. By simply changing the parameters characterizing the test statistic according to the applied SAR data, constant false-alarm rate detection is always obtained. An adaptive filtering scheme is presented, and the distributions of the detector are verified using simulated polarimetric SAR images. Using SAR data from the Danish airborne polarimetric SAR, EMISAR, it is demonstrated that superior edge detection results are obtained using polarimetric and/or multifrequency data compared to using only intensity data. Index Terms—Complex Wishart distribution, edge detection, polarimetry, synthetic aperture radar (SAR), Wishart likelihoodrati

    Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions

    Full text link
    The scaled complex Wishart distribution is a widely used model for multilook full polarimetric SAR data whose adequacy has been attested in the literature. Classification, segmentation, and image analysis techniques which depend on this model have been devised, and many of them employ some type of dissimilarity measure. In this paper we derive analytic expressions for four stochastic distances between relaxed scaled complex Wishart distributions in their most general form and in important particular cases. Using these distances, inequalities are obtained which lead to new ways of deriving the Bartlett and revised Wishart distances. The expressiveness of the four analytic distances is assessed with respect to the variation of parameters. Such distances are then used for deriving new tests statistics, which are proved to have asymptotic chi-square distribution. Adopting the test size as a comparison criterion, a sensitivity study is performed by means of Monte Carlo experiments suggesting that the Bhattacharyya statistic outperforms all the others. The power of the tests is also assessed. Applications to actual data illustrate the discrimination and homogeneity identification capabilities of these distances.Comment: Accepted for publication in the IEEE Transactions on Geoscience and Remote Sensing journa
    • …
    corecore