11 research outputs found

    Achievable secrecy enchancement through joint encryption and privacy amplification

    Get PDF
    In this dissertation we try to achieve secrecy enhancement in communications by resorting to both cryptographic and information theoretic secrecy tools and metrics. Our objective is to unify tools and measures from cryptography community with techniques and metrics from information theory community that are utilized to provide privacy and confidentiality in communication systems. For this purpose we adopt encryption techniques accompanied with privacy amplification tools in order to achieve secrecy goals that are determined based on information theoretic and cryptographic metrics. Every secrecy scheme relies on a certain advantage for legitimate users over adversaries viewed as an asymmetry in the system to deliver the required security for data transmission. In all of the proposed schemes in this dissertation, we resort to either inherently existing asymmetry in the system or proactively created advantage for legitimate users over a passive eavesdropper to further enhance secrecy of the communications. This advantage is manipulated by means of privacy amplification and encryption tools to achieve secrecy goals for the system evaluated based on information theoretic and cryptographic metrics. In our first work discussed in Chapter 2 and the third work explained in Chapter 4, we rely on a proactively established advantage for legitimate users based on eavesdropper’s lack of knowledge about a shared source of data. Unlike these works that assume an errorfree physical channel, in the second work discussed in Chapter 3 correlated erasure wiretap channel model is considered. This work relies on a passive and internally existing advantage for legitimate users that is built upon statistical and partial independence of eavesdropper’s channel errors from the errors in the main channel. We arrive at this secrecy advantage for legitimate users by exploitation of an authenticated but insecure feedback channel. From the perspective of the utilized tools, the first work discussed in Chapter 2 considers a specific scenario where secrecy enhancement of a particular block cipher called Data Encryption standard (DES) operating in cipher feedback mode (CFB) is studied. This secrecy enhancement is achieved by means of deliberate noise injection and wiretap channel encoding as a technique for privacy amplification against a resource constrained eavesdropper. Compared to the first work, the third work considers a more general framework in terms of both metrics and secrecy tools. This work studies secrecy enhancement of a general cipher based on universal hashing as a privacy amplification technique against an unbounded adversary. In this work, we have achieved the goal of exponential secrecy where information leakage to adversary, that is assessed in terms of mutual information as an information theoretic measure and Eve’s distinguishability as a cryptographic metric, decays at an exponential rate. In the second work generally encrypted data frames are transmitted through Automatic Repeat reQuest (ARQ) protocol to generate a common random source between legitimate users that later on is transformed into information theoretically secure keys for encryption by means of privacy amplification based on universal hashing. Towards the end, future works as an extension of the accomplished research in this dissertation are outlined. Proofs of major theorems and lemmas are presented in the Appendix

    Polar codes combined with physical layer security on impulsive noise channels

    Get PDF
    Ph. D. ThesisThe need for secure communications is becoming more and more impor- tant in modern society as wired and wireless connectivity becomes more ubiquitous. Currently, security is achieved by using well established encryption techniques in the upper layers that rely on computational complexity to ensure security. However, processing power is continu- ally increasing and well-known encryption schemes are more likely to be cracked. An alternative approach to achieving secure communication is to exploit the properties of the communication channel. This is known as physical layer security and is mathematically proven to be secure. Phys- ical layer security is an active research area, with a significant amount of literature covering many different aspects. However, one issue that does not appear to have been investigated in the literature is the effect on physical layer security when the noise in the communication channel is impulsive. Impulsive noise adds large spikes to the transmitted signal for very short durations that can significantly degrade the signal. The main source of impulsive noise in wireless communications is electromag- netic interference generated by machinery. Therefore, this project will investigate the effect of impulsive noise on physical layer security. To ensure a high level of performance, advanced error-correcting codes are needed to correct the multiple errors due to this harsh channel. Turbo and Low-Density Parity-Check (LDPC) codes are capacity-approaching codes commonly used in current wireless communication standards, but their complexity and latency can be quite high and can be a limiting fac- tor when required very high data rates. An alternative error-correcting code is the polar code, which can actually achieve the Shannon capacity on any symmetric binary input discrete memoryless channel (B-DMC). Furthermore, the complexity of polar codes is low and this makes them an attractive error-correcting code for high data rate wireless commu- nications. In this project, polar codes are combined with physical layer security and the performance and security of the system is evaluated on impulsive noise channels for the first time. This project has three contributions: Polar codes designed for impulsive noise channels using density evo- lution are combined with physical layer security on a wire-tap chan- nel experiencing impulsive noise. The secrecy rate of polar codes is maximised. In the decoding of polar codes, the frozen bits play an important part. The posi- tions of the frozen bits has a significant impact on performance and therefore, the selection of optimal frozen bits is presented to opti- mise the performance while maintaining secure communications on impulsive noise wire-tap channels. Optimal puncturing patterns are investigated to obtain polar codes with arbitrary block lengths and can be applied to different modu- lation schemes, such as binary phase shift keying (BPSK) and M- ary Quadrature Amplitude Modulation (QAM), that can be rate compatible with practical communication systems. The punctured polar codes are combined with physical layer security, allowing the construction of a variety of different code rates while maintaining good performance and security on impulsive noise wire-tap chan- nels. The results from this work have demonstrated that polar codes are ro- bust to the effects of impulsive noise channel and can achieve secure communications. The work also addresses the issue of security on im- pulsive noise channels and has provided important insight into scenarios where the main channel between authorised users has varying levels of impulsiveness compared with the eavesdropper's channel. One of the most interesting results from this thesis is the observation that polar codes combined with physical layer security can achieve good perfor- mance and security even when the main channel is more impulsive than the eavesdropper's channel, which was unexpected. Therefore, this thesis concludes that the low-complexity polar codes are an excellent candidate for the error-correcting codes when combined with physical layer security in more harsh impulsive wireless communication channels

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Polar-code-based security on the BSC-modeled HARQ in fading

    No full text
    Summarization: This paper focuses on the achievable secrecy throughput in the hybrid automatic repeat request (HARQ) protocol over quasi-static Rayleigh fading channels for the wiretap channel model. We propose a scheme that ensures reliable and secure communication utilizing polar coding in conjunction with the HARQ protocol. Security and reliability is ensured even when the instantaneous power of the wiretap channel is greater than the main channel due to wireless fading.Παρουσιάστηκε στο: 23rd International Conference on Telecommunication
    corecore