29,777 research outputs found

    Asymmetric Error Correction and Flash-Memory Rewriting using Polar Codes

    Get PDF
    We propose efficient coding schemes for two communication settings: 1. asymmetric channels, and 2. channels with an informed encoder. These settings are important in non-volatile memories, as well as optical and broadcast communication. The schemes are based on non-linear polar codes, and they build on and improve recent work on these settings. In asymmetric channels, we tackle the exponential storage requirement of previously known schemes, that resulted from the use of large Boolean functions. We propose an improved scheme, that achieves the capacity of asymmetric channels with polynomial computational complexity and storage requirement. The proposed non-linear scheme is then generalized to the setting of channel coding with an informed encoder, using a multicoding technique. We consider specific instances of the scheme for flash memories, that incorporate error-correction capabilities together with rewriting. Since the considered codes are non-linear, they eliminate the requirement of previously known schemes (called polar write-once-memory codes) for shared randomness between the encoder and the decoder. Finally, we mention that the multicoding scheme is also useful for broadcast communication in Marton's region, improving upon previous schemes for this setting.Comment: Submitted to IEEE Transactions on Information Theory. Partially presented at ISIT 201

    Rewriting Flash Memories by Message Passing

    Get PDF
    This paper constructs WOM codes that combine rewriting and error correction for mitigating the reliability and the endurance problems in flash memory. We consider a rewriting model that is of practical interest to flash applications where only the second write uses WOM codes. Our WOM code construction is based on binary erasure quantization with LDGM codes, where the rewriting uses message passing and has potential to share the efficient hardware implementations with LDPC codes in practice. We show that the coding scheme achieves the capacity of the rewriting model. Extensive simulations show that the rewriting performance of our scheme compares favorably with that of polar WOM code in the rate region where high rewriting success probability is desired. We further augment our coding schemes with error correction capability. By drawing a connection to the conjugate code pairs studied in the context of quantum error correction, we develop a general framework for constructing error-correction WOM codes. Under this framework, we give an explicit construction of WOM codes whose codewords are contained in BCH codes.Comment: Submitted to ISIT 201

    When Do WOM Codes Improve the Erasure Factor in Flash Memories?

    Full text link
    Flash memory is a write-once medium in which reprogramming cells requires first erasing the block that contains them. The lifetime of the flash is a function of the number of block erasures and can be as small as several thousands. To reduce the number of block erasures, pages, which are the smallest write unit, are rewritten out-of-place in the memory. A Write-once memory (WOM) code is a coding scheme which enables to write multiple times to the block before an erasure. However, these codes come with significant rate loss. For example, the rate for writing twice (with the same rate) is at most 0.77. In this paper, we study WOM codes and their tradeoff between rate loss and reduction in the number of block erasures, when pages are written uniformly at random. First, we introduce a new measure, called erasure factor, that reflects both the number of block erasures and the amount of data that can be written on each block. A key point in our analysis is that this tradeoff depends upon the specific implementation of WOM codes in the memory. We consider two systems that use WOM codes; a conventional scheme that was commonly used, and a new recent design that preserves the overall storage capacity. While the first system can improve the erasure factor only when the storage rate is at most 0.6442, we show that the second scheme always improves this figure of merit.Comment: to be presented at ISIT 201

    Write-Once-Memory Codes by Source Polarization

    Full text link
    We propose a new Write-Once-Memory (WOM) coding scheme based on source polarization. By applying a source polarization transformation on the to-be-determined codeword, the proposed WOM coding scheme encodes information into the bits in the high-entropy set. We prove in this paper that the proposed WOM codes are capacity-achieving. WOM codes have found many applications in modern data storage systems, such as flash memories.Comment: 5 pages, Proceedings of the International Conference on Computing, Networking and Communications (ICNC 2015), Anaheim, California, USA, February 16-19, 201

    Scalable Successive-Cancellation Hardware Decoder for Polar Codes

    Full text link
    Polar codes, discovered by Ar{\i}kan, are the first error-correcting codes with an explicit construction to provably achieve channel capacity, asymptotically. However, their error-correction performance at finite lengths tends to be lower than existing capacity-approaching schemes. Using the successive-cancellation algorithm, polar decoders can be designed for very long codes, with low hardware complexity, leveraging the regular structure of such codes. We present an architecture and an implementation of a scalable hardware decoder based on this algorithm. This design is shown to scale to code lengths of up to N = 2^20 on an Altera Stratix IV FPGA, limited almost exclusively by the amount of available SRAM
    • …
    corecore