2,355 research outputs found

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    Topics in Routing and Network Coding for Wireless Networks

    Get PDF
    This dissertation presents topics in routing and network coding for wireless networks. We present a multipurpose multipath routing mechanism. We propose an efficient packet encoding algorithm that can easily integrate a routing scheme with network coding. We also discuss max-min fair rate allocation and scheduling algorithms for the flows in a wireless network that utilizes coding. We propose Polar Coordinate Routing (PCR) to create multiple paths between a source and a destination in wireless networks. Our scheme creates paths that are circular segments of different radii connecting source-destination pairs. We propose a non-euclidean distance metric that allows messages to travel along these paths. Using PCR it is possible to maintain a known separation among the paths, which reduces the interference between the nodes belonging to two separate routes. Our extensive simulations show that while PCR achieves a known separation between the routes, it does so with a small increase in overall hop count. Moreover, we demonstrate that the variances of average separation and hop count are lower for the paths created using PCR compared to the existing schemes, indicating a more reliable system. Existing multipath routing schemes in wireless networks do not perform well in the areas with obstacles or low node density. To overcome adverse areas in a network, we integrate PCR with simple robotic routing, which lets a message circumnavigate an obstacle and follow the multipath trajectory to the destination as soon as the obstacle is passed. Next we propose an efficient packet encoding algorithm to integrate a routing scheme with network coding. Note that this packet encoding algorithm is not dependent on PCR. In fact it can be coupled with any routing scheme in order to leverage the benefits offered by both an advanced routing scheme and an enhanced packet encoding algorithm. Our algorithm, based on bipartite graphs, lets a node exhaustively search its queue to identify the maximum set of packets that can be combined in a single transmission. We extend this algorithm to consider multiple next hop neighbors for a packet while searching for an optimal packet combination, which improves the likelihood of combining more packets in a single transmission. Finally, we propose an algorithm to assign max-min fair rates to the flows in a wireless network that utilizes coding. We demonstrate that when a network uses coding, a direct application of conventional progressive filling algorithm to achieve max-min fairness may yield incorrect or suboptimal results. To emulate progressive filling correctly for a wireless networks with coding, we couple a conflict graph based framework with a linear program. Our model helps us directly select a bottleneck flow at each iteration of the algorithm, eliminating the need of gradually increasing the rates of the flows until a bottleneck is found. We demonstrate the caveats in selecting the bottleneck flows and setting up transmission scheduling constraints in order to avoid suboptimal results. We first propose a centralized fair rate allocation algorithm assuming the global knowledge of the network. We also present a novel yet simple distributed algorithm that achieves the same results as the centralized algorithm. We also present centralized as well as distributed scheduling algorithms that help flows achieve their fair rates. We run our rate allocation algorithm on various topologies. We use various fairness metrics to show that our rate allocation algorithm outperforms existing algorithms (based on network utility maximization) in terms of fairness

    1-D Coordinate Based on Local Information for MAC and Routing Issues in WSNs

    Get PDF
    More and more critical Wireless Sensor Networks (WSNs) applications are emerging. Those applications need reliability and respect of time constraints. The underlying mechanisms such as MAC and routing must handle such requirements. Our approach to the time constraint problem is to bound the hop-count between a node and the sink and the time it takes to do a hop so the end-to-end delay can be bounded and the communications are thus real-time. For reliability purpose we propose to select forwarder nodes depending on how they are connected in the direction of the sink. In order to be able to do so we need a coordinate (or a metric) that gives information on hop-count, that allows to strongly differentiate nodes and gives information on the connectivity of each node keeping in mind the intrinsic constraints of WSWs such as energy consumption, autonomy, etc. Due to the efficiency and scalability of greedy routing in WSNs and the financial cost of GPS chips, Virtual Coordinate Systems (VCSs) for WSNs have been proposed. A category of VCSs is based on the hop-count from the sink, this scheme leads to many nodes having the same coordinate. The main advantage of this system is that the hops number of a packet from a source to the sink is known. Nevertheless, it does not allow to differentiate the nodes with the same hop-count. In this report we propose a novel hop-count-based VCS which aims at classifying the nodes having the same hop-count depending on their connectivity and at differentiating nodes in a 2-hop neighborhood. Those properties make the coordinates, which also can be viewed as a local identifier, a very powerful metric which can be used in WSNs mechanisms.Comment: (2011

    Robust geometric forest routing with tunable load balancing

    Get PDF
    Although geometric routing is proposed as a memory-efficient alternative to traditional lookup-based routing and forwarding algorithms, it still lacks: i) adequate mechanisms to trade stretch against load balancing, and ii) robustness to cope with network topology change. The main contribution of this paper involves the proposal of a family of routing schemes, called Forest Routing. These are based on the principles of geometric routing, adding flexibility in its load balancing characteristics. This is achieved by using an aggregation of greedy embeddings along with a configurable distance function. Incorporating link load information in the forwarding layer enables load balancing behavior while still attaining low path stretch. In addition, the proposed schemes are validated regarding their resilience towards network failures

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    • 

    corecore