44 research outputs found

    Grid coevolution for adaptive simulations; application to the building of opening books in the game of Go

    Get PDF
    International audienceThis paper presents a successful application of parallel (grid) coevolution applied to the building of an opening book (OB) in 9x9 Go. Known sayings around the game of Go are refound by the algorithm, and the resulting program was also able to credibly comment openings in professional games of 9x9 Go. Interestingly, beyond the application to the game of Go, our algorithm can be seen as a ”meta”-level for the UCT-algorithm: ”UCT applied to UCT” (instead of ”UCT applied to a random player” as usual), in order to build an OB. It is generic and could be applied as well for analyzing a given situation of a Markov Decision Process

    Evolutionary Optimisation for Obstacle Detection and Avoidance in Mobile Robotics

    Get PDF
    http://www.fujipress.jpThis paper presents an artificial evolution-based method for stereo image analysis and its application to real-time obstacle detection and avoidance for a mobile robot. It uses the Parisian approach, which consists here in splitting the representation of the robot's environment into a large number of simple primitives, the “flies”, which are evolved according to a biologically inspired scheme. Results obtained on real scene with different fitness functions are presented and discussed, and an exploitation for obstacle avoidance in mobile robotics is proposed

    Evolutionary Optimisation for Obstacle Detection and Avoidance in Mobile Robotics

    Full text link

    Grid coevolution for adaptive simulations; application to the building of opening books in the game of Go

    Get PDF
    International audienceThis paper presents a successful application of parallel (grid) coevolution applied to the building of an opening book (OB) in 9x9 Go. Known sayings around the game of Go are refound by the algorithm, and the resulting program was also able to credibly comment openings in professional games of 9x9 Go. Interestingly, beyond the application to the game of Go, our algorithm can be seen as a ”meta”-level for the UCT-algorithm: ”UCT applied to UCT” (instead of ”UCT applied to a random player” as usual), in order to build an OB. It is generic and could be applied as well for analyzing a given situation of a Markov Decision Process

    Modeling an agrifood industrial process using cooperative coevolution Algorithms

    Get PDF
    This report presents two experiments related to the modeling of an industrial agrifood process using evolutionary techniques. Experiments have been focussed on a specific problem which is the modeling of a Camembert-cheese ripening process. Two elated complex optimisation problems have been considered: -- a deterministic modeling problem, the phase prediction roblem, for which a search for a closed form tree expression has been performed using genetic programming (GP), -- a Bayesian network structure estimation problem, considered as a two-stage problem, i.e. searching first for an approximation of an independence model using EA, and then deducing, via a deterministic algorithm, a Bayesian network which represents the equivalence class of the independence model found at the first stage. In both of these problems, cooperative-coevolution techniques (also called ``Parisian'' approaches) have been proved successful. These approaches actually allow to represent the searched solution as an aggregation of several individuals (or even as a whole population), as each individual only bears a part of the searched solution. This scheme allows to use the artificial Darwinism principles in a more economic way, and the gain in terms of robustness and efficiency is important

    Artificial Darwinism: an overview

    Get PDF
    Genetic algorithms, genetic programming, evolution strategies, and what is now called evolutionary algorithms, are stochastic optimisation techniques inspired by Darwin’s theory. We present here an overview of these techniques, while stressing on the extreme versatility of the artificial evolution concept. Their applicative framework is very large and is not limited to pure optimisation. Artifical evolution implementations are however computationally expensive: an efficient tuning of the components and parameter of these algorithms should be based on a clear comprehension of the evolutionary mechanisms. Moreover, it is noticeable that the killer-applications of the domain are for the most part based on hybridisation with other optimisation techniques. As a consequence, evolutionary algorithms are not to be considered in competition but rather in complement to the “classical ” optimisation techniques.Les algorithmes gĂ©nĂ©tiques, la programmation gĂ©nĂ©tique, les stratĂ©gies d’évolution, et ce que l’on appelle maintenant en gĂ©nĂ©ral les algorithmes Ă©volutionnaires, sont des techniques d’optimisation stochastiques inspirĂ©es de la thĂ©orie de l’évolution selon Darwin. Nous donnons ici une vision globale de ces techniques, en insistant sur l’extrĂȘme flexibilitĂ© du concept d’évolution artificielle. Cet outil a un champ trĂšs vaste d’applications, qui ne se limite pas Ă  l’optimisation pure. Leur mise en oeuvre se fait cependant au prix d’un coĂ»t calculatoire important, d’oĂč la nĂ©cessitĂ© de bien comprendre ces mĂ©canismes d’évolution pour adapter et rĂ©gler efficacement les diffĂ©rentes composantes de ces algorithmes. Par ailleurs, on note que les applications-phares de ce domaine sont assez souvent fondĂ©es sur une hybridation avec d’autres techniques d’optimisation. Les algorithmes Ă©volutionnaires ne sont donc pas Ă  considĂ©rer comme une mĂ©thode d’optimisation concurrente des mĂ©thodes d’optimisation classiques, mais plutĂŽt comme une approche complĂ©mentaire

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Regession Methods in Traffic Prediction

    Get PDF
    DiplomovĂĄ prĂĄce se zabĂœvĂĄ moĆŸnostmi predikce dopravnĂ­ situace na makroskopickĂ© Ășrovni s vyuĆŸitĂ­m ĂșdajĆŻ naměƙenĂœch pomocĂ­ dopravnĂ­ch senzorĆŻ. Těmito senzory mohou bĂœt indukčnĂ­ smyčky, radarovĂ© detektory nebo kamery. PrĂĄce se zaměƙuje na problematiku predikce dojezdovĂœch dob automobilĆŻ. V rĂĄmci diplomovĂ© prĂĄce byla navrĆŸena a implementovĂĄna metoda dojezdovĂœch dob. NavrĆŸenĂĄ metoda byla otestovĂĄna pomocĂ­ dat z reĂĄlnĂ©ho provozu. PrvnĂ­m cĂ­lem prĂĄce bude seznĂĄmenĂ­ s metodami predikce, kterĂ© budou vyuĆŸĂ­vĂĄny. HlavnĂ­m cĂ­lem prĂĄce je vyuĆŸĂ­t zĂ­skanĂœch znalostĂ­ k navrĆŸenĂ­ a implementaci aplikace, kterĂĄ bude predikovat poĆŸadovanĂ© dopravnĂ­ veličiny.Master thesis deals with possibilities of predicting traffic situation on the macroscopic level using data, that were recorded using traffic sensors. This sensors could be loop detectors, radar detectors or cameras. The main problem discussed in this thesis is the travel time of cars. A method for travel time prediction was designed and implemented as a part of this thesis. Data from real traffic were used to test the designed method. The first objective of this thesis is to become familiar with the prediction methods that will be used. The main objective is to use the acquired knowledge to design and to implement an aplication that will predict required traffic variables.
    corecore