528 research outputs found

    Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

    Get PDF
    In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Enhanced Sliding Mode Wheel Slip Controller for Heavy Goods Vehicles

    Get PDF
    This paper introduces an improved version of a sliding mode slip controller for pneumatic brake system ofheavy goods vehicles, HGVs. Using the Fast Actuating Brake Valve, FABV, allows to adopt advance control approaches forwheel-slip controllers which provide features such as fast dynamic response, stability and robustness. In this paper, the slidingmode algorithm which was developed for the speed dependent wheel slip control using the FABV hardware is analysed andimproved. The asymptotic convergence properties of the control algorithm are proven using Lyapunov stability theory and therobustness of the method is investigate

    Dynamic Object Tracking Control for a Non-Holonomic Wheeled Autonomous Robot

    Get PDF
    [[abstract]]This paper is devoted to design and implement a non-holonomic wheeled mobile robot that possesses dynamic object-tracking capability by using real-time image processing. Two motion control laws are proposed using Lyapunov’s direct method and computed-torque method. Simulation results illustrate the effectiveness of the developed schemes. The overall experimental setup of the mobile robot developed in this paper is composed of a Windows based personal computer, Programmable Interface Controllers, a mobile robot, and an omni-directional vision system. Finally, the image-based real-time implementation experiments of the mobile robot demonstrate the feasibility and effectiveness of the proposed schemes.[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Lyapunov Self-triggered Controller for Nonlinear Trajectory Tracking of Unicycle-type Robot

    Get PDF
    This paper focuses on the design and implementation of an aperiodic control of nonholonomic robots tracking nonlinear trajectories. The main objective of our controller is to reduce the number of updates while preserving control performance guarantees. To solve the problem in a more efficient way, we design two aperiodic control solutions, one to reach a target point and a second to track a predefined nonlinear trajectory. Unlike most previous work, our triggering condition only updates the controller when the time derivative of the Lyapunov function becomes nonnegative, without taking into account the measurement error. Multiple simulated results with different initial conditions are included, showing how our control solution significantly reduces the need for communication in comparison with periodic and other aperiodic strategies while preserving a desired tracking performance. To validate the proposal experimental tests of each control technique with a P3-DX robot remotely controlled through an IEEE 802.11g wireless network are also carried out

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Feasibility assessment of a new navigation system for unmanned underwater vehicles with adaptive gain sliding mode differentiation

    Get PDF
    In this work, a highly accurate navigation device is proposed for unmanned underwater vehicle navigation. A six degree of freedom, open loop underwater vehicle model is generated and is used as the motion platform in this study. The new navigation system, previously developed at the Rochester Institute of Technology, requires real-time body angular acceleration terms as inputs to the algorithm. To address this requirement, real-time signal differentiation techniques were investigated. The differentiation of real-world, noisy signals is a difficult task due to the inherent numerical differentiation and subsequent noise amplification. A sliding mode differentiation scheme is proposed with a fuzzy adaptive controller to aid the accuracy of the signal differentiator and minimize noise amplification. The device algorithms are then implemented in the underwater vehicle model and navigation estimates are compared against theoretical motion. The result is an accurate representation of underwater vehicle attitude and velocity without the aid of global positioning satellite data. Although inertial position estimates obtained from noisy signals suffer from drifting, the filtering techniques used in this work minimize this effect. The navigation estimates show the best results on dynamic maneuvers which do not induce a rolling motion as the underdamped rolling motion requires higher steady state noise for estimation. When assessed against current technologies for underwater vehicle navigation that do not use GPS, the proposed system provides comparable estimation results while creating a reduction of cost, weight and removing the dependence on the speed of sound in water

    Time-optimal trajectory and robust adaptive control for hybrid underwater glider

    Get PDF
    The undersea environment is generally still a mystery for the human race, although it has been with us for a long time. To explore under the sea, the underwater glider is the efficient equipment capable of sustainable operation for several months. For faster and longer duration performance, a new design of underwater glider (UG) shaping ray type is proposed. To have the shortest settling time, a new design of time-optimal trajectory (TOT) for controlling the states of the ray-type hybrid underwater glider (RHUG) is proposed. And for the stable flight control, a robust adaptive controller is designed for the RHUG with unknown parameters and environmental disturbances. The heading dynamics of the RHUG is presented with linear and quadratic damping. A closed form solution of the heading dynamics is realized for designing the time-optimal trajectory. The conventional and super-twisting sliding mode control will be constructed for tracking this trajectory. The tracking performance considering the disturbance effect will be discussed in simulations. For identification of unknown parameters of the system, the adaptive control is designed and implemented by the heading experiment. The RHUG uses the net buoyancy force for gliding under the water, so the depth control is essential. In this dissertation, a robust control algorithm with TOT will be carried out for the heaving motion using a hybrid actuation of the buoyancy engine and the propeller. The net buoyancy force with a constant rate is generated by the buoyancy engine for both descending and ascending motion. And the second actuator for the depth control is the propeller with quick response in producing thrusting force. To apply the robust control with TOT, the control input is designed for the buoyancy engine and thruster individually. And finally, the robust control with TOT using the buoyancy engine and thruster is simulated with consideration of external disturbances. When the RHUG is the underactuated system, a robust adaptive control is designed for the RHUG dynamics based on Lyapunov’s direct method using the backstepping and sliding mode control techniques. The performance of this controller is simulated for gliding motion and depth control with unknown parameters and bounded disturbances.Contents Contents i List of Tables iv List of Figures v Chapter 1. Introduction 1 1.1. Hybrid underwater glider 1 1.2. Time-optimal trajectory 4 1.3. Nonlinear control design 5 Chapter 2. Dynamics of RHUG 8 2.1 Dynamics of underwater vehicles 8 2.2 Design of RHUG platform 11 2.2.1 Hull design 11 2.2.2 Buoyancy engine and mass-shifter 12 2.2.3 Battery 13 2.2.4 Sensors 14 2.2.5 Assembly 16 2.3 Dynamics of RHUG 17 2.4 Hydrodynamic coefficients 19 2.5 Thruster modeling 21 2.6 Buoyancy engine modeling 22 2.7 Mass-shifter modeling 23 Chapter 3. Time-optimal trajectory with actuator saturation for heading control 25 3.1 Time-optimal trajectory 25 3.2 Heading motion 25 3.3 Analytic solution of heading dynamic equation 26 3.3.1 Right-hand direction 29 3.3.2 Left-hand direction 36 3.4 Time-optimal trajectory 42 3.5 Super-twisting sliding mode control 44 3.6 Computer simulation 46 3.6.1 Simulation 1 46 3.6.2 Simulation 2 47 3.6.3 Simulation 3 49 Chapter 4. Time-optimal trajectory for heaving motion control using buoyancy engine and propeller individually 51 4.1. Heave dynamics and TOT 51 4.2. Analytical solution of heave dynamics with buoyancy and thruster force individually 54 4.2.1 First segment with positive rate 54 4.2.2 Second segment with maximum input 55 4.2.3 Third segment with constant velocity 56 4.2.4 Fourth segment with negative rate 57 4.2.5 Fifth segment with minimum input 58 4.3. Time-optimal trajectory for depth motion 59 4.3.1 Find z1, w1 and w1 59 4.3.2 Find t2, z2, w2 and w2 61 4.3.3 Find w3, z4 and w4 62 4.3.4 Find z3, t3 and t4 63 4.3.5 Find α and t5 64 4.4. Sliding mode control for heave dynamics 64 4.5. Computer simulation 66 4.5.1. Simulation 1 66 4.5.2. Simulation 2 69 Chapter 5. Experimental study of direct adaptive control along TOT for heading motion 72 5.1. Motivation 72 5.2. Composition of RHUG 73 5.3. Robust adaptive control for heading dynamics 77 5.4. Computer simulation 79 5.5 Experiment 82 5.5.1 First experiment with k1=2.5,k2=30 82 5.5.2 Second experiment with k1=2,k2=30 83 5.5.3 Third experiment with k1=2,k2=50 85 Chapter 6. Robust adaptive control design for vertical motion 89 6.1. Dynamics of vertical plane 89 6.2. Adaptive sliding-mode control for pitch motion 91 6.3. Adaptive sliding-mode control for surge motion 93 6.4. LOS and PI depth-keeping guidance 95 6.5. Computer simulation 97 6.5.1 Simulation 1 97 6.5.2 Simulation 2 104 Chapter 7. Conclusion 111 Reference 113Docto

    Satellite Attitude Control Using Only Electromagnetic Actuation

    Get PDF
    corecore