11,196 research outputs found

    Polar codes for classical-quantum channels

    Get PDF
    Holevo, Schumacher, and Westmoreland's coding theorem guarantees the existence of codes that are capacity-achieving for the task of sending classical data over a channel with classical inputs and quantum outputs. Although they demonstrated the existence of such codes, their proof does not provide an explicit construction of codes for this task. The aim of the present paper is to fill this gap by constructing near-explicit "polar" codes that are capacity-achieving. The codes exploit the channel polarization phenomenon observed by Arikan for the case of classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by "channel combining" and "channel splitting," in which a fraction of the synthesized channels are perfect for data transmission while the other fraction are completely useless for data transmission, with the good fraction equal to the capacity of the channel. The channel polarization effect then leads to a simple scheme for data transmission: send the information bits through the perfect channels and "frozen" bits through the useless ones. The main technical contributions of the present paper are threefold. First, we leverage several known results from the quantum information literature to demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, in the sense that the word error rate decays exponentially with the blocklength of the code. For this last result, we exploit Sen's recent "non-commutative union bound" that holds for a sequence of projectors applied to a quantum state.Comment: 12 pages, 3 figures; v2 in IEEE format with minor changes; v3 final version accepted for publication in the IEEE Transactions on Information Theor

    Performance of polar codes for quantum and private classical communication

    Get PDF
    We analyze the practical performance of quantum polar codes, by computing rigorous bounds on block error probability and by numerically simulating them. We evaluate our bounds for quantum erasure channels with coding block lengths between 2^10 and 2^20, and we report the results of simulations for quantum erasure channels, quantum depolarizing channels, and "BB84" channels with coding block lengths up to N = 1024. For quantum erasure channels, we observe that high quantum data rates can be achieved for block error rates less than 10^(-4) and that somewhat lower quantum data rates can be achieved for quantum depolarizing and BB84 channels. Our results here also serve as bounds for and simulations of private classical data transmission over these channels, essentially due to Renes' duality bounds for privacy amplification and classical data transmission of complementary observables. Future work might be able to improve upon our numerical results for quantum depolarizing and BB84 channels by employing a polar coding rule other than the heuristic used here.Comment: 8 pages, 6 figures, submission to the 50th Annual Allerton Conference on Communication, Control, and Computing 201

    Efficient Quantum Polar Coding

    Full text link
    Polar coding, introduced 2008 by Arikan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme which, using some pre-shared entanglement, asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Furthermore, for channels with sufficiently low noise level, we demonstrate that the rate of preshared entanglement required is zero.Comment: v1: 15 pages, 4 figures. v2: 5+3 pages, 3 figures; argumentation simplified and improve

    Polar codes for degradable quantum channels

    Get PDF
    Channel polarization is a phenomenon in which a particular recursive encoding induces a set of synthesized channels from many instances of a memoryless channel, such that a fraction of the synthesized channels becomes near perfect for data transmission and the other fraction becomes near useless for this task. Mahdavifar and Vardy have recently exploited this phenomenon to construct codes that achieve the symmetric private capacity for private data transmission over a degraded wiretap channel. In the current paper, we build on their work and demonstrate how to construct quantum wiretap polar codes that achieve the symmetric private capacity of a degraded quantum wiretap channel with a classical eavesdropper. Due to the Schumacher-Westmoreland correspondence between quantum privacy and quantum coherence, we can construct quantum polar codes by operating these quantum wiretap polar codes in superposition, much like Devetak's technique for demonstrating the achievability of the coherent information rate for quantum data transmission. Our scheme achieves the symmetric coherent information rate for quantum channels that are degradable with a classical environment. This condition on the environment may seem restrictive, but we show that many quantum channels satisfy this criterion, including amplitude damping channels, photon-detected jump channels, dephasing channels, erasure channels, and cloning channels. Our quantum polar coding scheme has the desirable properties of being channel-adapted and symmetric capacity-achieving along with having an efficient encoder, but we have not demonstrated that the decoding is efficient. Also, the scheme may require entanglement assistance, but we show that the rate of entanglement consumption vanishes in the limit of large blocklength if the channel is degradable with classical environment.Comment: 12 pages, 1 figure; v2: IEEE format, minor changes including new figure; v3: minor changes, accepted for publication in IEEE Transactions on Information Theor

    Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs

    Full text link
    We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation and an Ar{\i}kan-style transformation is applied using this operation. It is shown that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels which project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple access channels (cq-MAC). The encoder can be implemented in O(NlogN)O(N\log N) operations, where NN is the blocklength of the code. A quantum successive cancellation decoder for the constructed codes is proposed. It is shown that the probability of error of this decoder decays faster than 2Nβ2^{-N^{\beta}} for any β<12\beta<\frac{1}{2}.Comment: 30 pages. Submitted to IEEE Trans. Inform. Theory and in part to ISIT201
    corecore