212 research outputs found

    PolSAR and PolInSAR model based information estimation

    Get PDF
    Speckle for multidimensional SAR data may be modeled as the combination of multiplicative and additive noise sources. As demonstrated, the use of this noise model does not corrupt the estimation of physical information from PolInSAR data. The definition of a model based PolInSAR filter allows also the computation of relative errors for estimated heights of forested areas from PolInSAR data.Peer ReviewedPostprint (published version

    Polinsar based scattering information retrieval for forest aboveground biomass estimation

    Get PDF

    Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either DAD_{\mathrm{ A}} or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.Peer ReviewedPostprint (author's final draft

    Blind Source Separation in Polarimetric SAR Interferometry

    No full text
    International audiencePolarimetric incoherent target decomposition aims in access-ing physical parameters of illuminated scatters through the analysis of target coherence or covariance matrix. In this framework, Independent Component Analysis (ICA) was recently proposed as an alternative method to Eigenvector decomposition to better interpret non-Gaussian heterogeneous clutter (inherent to high resolution SAR systems). Until now, the two main drawbacks reported of the aforementioned method are the greater number of samples required for an unbiased estimation, when compared to classical Eigenvector decomposition and the inability to be employed in scenarios under Gaussian clutter assumption. First, a Monte Carlo approach is performed in order to investigate the bias in estimating the Touzi Target Scattering Vector Model (TSVM) parameters when ICA is employed. A RAMSES X-band image acquired over Brétigny, France is taken into consideration to investigate the bias estimation under different scenarios. Finally, some results in terms of POLinSAR coherence optimization [1] in the context of ICA are proposed

    SMF-POLOPT: an adaptive multitemporal pol(DIn)SAR filtering and phase optimization algorithm for PSI applications

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Speckle noise and decorrelation can hamper the application and interpretation of PolSAR images. In this paper, a new adaptive multitemporal Pol(DIn)SAR filtering and phase optimization algorithm is proposed to address these limitations. This algorithm first categorizes and adaptively filters permanent scatterer (PS) and distributed scatterer (DS) pixels according to their polarimetric scattering mechanisms [i.e., the scattering-mechanism-based filtering (SMF)]. Then, two different polarimetric DInSAR (POLDInSAR) phase OPTimization methods are applied separately on the filtered PS and DS pixels (i.e., POLOPT). Finally, an inclusive pixel selection approach is used to identify high-quality pixels for ground deformation estimation. Thirty-one full-polarization Radarsat-2 SAR images over Barcelona (Spain) and 31 dual-polarization TerraSAR-X images over Murcia (Spain) have been used to evaluate the performance of the proposed algorithm. The PolSAR filtering results show that the speckle of PolSAR images has been well reduced with the preservation of details by the proposed SMF. The obtained ground deformation monitoring results have shown significant improvements, about ×7.2 (the full-polarization case) and ×3.8 (the dual-polarization case) with respect to the classical full-resolution single-pol amplitude dispersion method, on the valid pixels' densities. The excellent PolSAR filtering and ground deformation monitoring results achieved by the adaptive Pol(DIn)SAR filtering and phase optimization algorithm (i.e., the SMF-POLOPT) have validated the effectiveness of this proposed scheme.Peer ReviewedPostprint (author's final draft

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    A Simple RVoG Test for PolInSAR Data

    Get PDF
    In this paper, we present a simple algorithm for assessing the validity of the RVoG model for PolInSAR-based inversion techniques. This approach makes use of two important features characterizing a homogeneous random volume over a ground surface, i.e., the independence on polarization states of wave propagation through the volume and the structure of the polarimetric interferometric coherency matrix. These two features have led to two different methods proposed in the literature for retrieving the topographic phase within natural covers, i.e., the well-known line fitting procedure and the observation of the (1, 2) element of the polarimetric interferometric coherency matrix. We show that differences between outputs from both approaches can be interpreted in terms of the PolInSAR modeling based on the Freeman-Durden concept, and this leads to the definition of a RVoG/non-RVoG test. The algorithm is tested with both indoor and airborne data over agricultural and tropical forest areas.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02
    corecore