178 research outputs found

    Poisson–Delaunay Mosaics of Order k

    Get PDF
    The order-k Voronoi tessellation of a locally finite set ⊆ℝ decomposes ℝ into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold

    On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

    Get PDF
    For a locally finite set in R2, the order-k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k. As an example, a stationary Poisson point process in R2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles in 1970

    On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

    Get PDF
    For a locally finite set in R2\mathbb{R}^2, the order-kk Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in kk. As an example, a stationary Poisson point process in R2\mathbb{R}^2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-11 Delaunay mosaics given by Miles in 1970

    Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics

    Full text link
    Using the geodesic distance on the nn-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1\mathbb{R}^{n+1}, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in nn-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the nn-sphere is isometric to the standard nn-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the nn-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics

    Weighted Poisson-Delaunay Mosaics

    Full text link
    Slicing a Voronoi tessellation in Rn\mathbb{R}^n with a kk-plane gives a kk-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the kk-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in Rn\mathbb{R}^n, we study the expected number of simplices in the kk-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a byproduct, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbb{R}^n

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    IST Austria Thesis

    Get PDF
    The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's
    corecore