168 research outputs found

    Non-uniform resolution and partial volume recovery in tomographic image reconstruction methods

    Get PDF
    Acquired data in tomographic imaging systems are subject to physical or detector based image degrading effects. These effects need to be considered and modeled in order to optimize resolution recovery. However, accurate modeling of the physics of data and acquisition processes still lead to an ill-posed reconstruction problem, because real data is incomplete and noisy. Real images are always a compromise between resolution and noise; therefore, noise processes also need to be fully considered for optimum bias variance trade off. Image degrading effects and noise are generally modeled in the reconstruction methods, while, statistical iterative methods can better model these effects, with noise processes, as compared to the analytical methods. Regularization is used to condition the problem and explicit regularization methods are considered better to model various noise processes with an extended control over the reconstructed image quality. Emission physics through object distribution properties are modeled in form of a prior function. Smoothing and edge-preserving priors have been investigated in detail and it has been shown that smoothing priors over-smooth images in high count areas and result in spatially non-uniform and nonlinear resolution response. Uniform resolution response is desirable for image comparison and other image processing tasks, such as segmentation and registration. This work proposes methods, based on MRPs in MAP estimators, to obtain images with almost uniform and linear resolution characteristics, using nonlinearity of MRPs as a correction tool. Results indicate that MRPs perform better in terms of response linearity, spatial uniformity and parameter sensitivity, as compared to QPs and TV priors. Hybrid priors, comprised of MRPs and QPs, have been developed and analyzed for their activity recovery performance in two popular PVC methods and for an analysis of list-mode data reconstruction methods showing that MPRs perform better than QPs in different situations

    Learning and inverse problems: from theory to solar physics applications

    Get PDF
    The problem of approximating a function from a set of discrete measurements has been extensively studied since the seventies. Our theoretical analysis proposes a formalization of the function approximation problem which allows dealing with inverse problems and supervised kernel learning as two sides of the same coin. The proposed formalization takes into account arbitrary noisy data (deterministically or statistically defined), arbitrary loss functions (possibly seen as a log-likelihood), handling both direct and indirect measurements. The core idea of this part relies on the analogy between statistical learning and inverse problems. One of the main evidences of the connection occurring across these two areas is that regularization methods, usually developed for ill-posed inverse problems, can be used for solving learning problems. Furthermore, spectral regularization convergence rate analyses provided in these two areas, share the same source conditions but are carried out with either increasing number of samples in learning theory or decreasing noise level in inverse problems. Even more in general, regularization via sparsity-enhancing methods is widely used in both areas and it is possible to apply well-known ell1ell_1-penalized methods for solving both learning and inverse problems. In the first part of the Thesis, we analyze such a connection at three levels: (1) at an infinite dimensional level, we define an abstract function approximation problem from which the two problems can be derived; (2) at a discrete level, we provide a unified formulation according to a suitable definition of sampling; and (3) at a convergence rates level, we provide a comparison between convergence rates given in the two areas, by quantifying the relation between the noise level and the number of samples. In the second part of the Thesis, we focus on a specific class of problems where measurements are distributed according to a Poisson law. We provide a data-driven, asymptotically unbiased, and globally quadratic approximation of the Kullback-Leibler divergence and we propose Lasso-type methods for solving sparse Poisson regression problems, named PRiL for Poisson Reweighed Lasso and an adaptive version of this method, named APRiL for Adaptive Poisson Reweighted Lasso, proving consistency properties in estimation and variable selection, respectively. Finally we consider two problems in solar physics: 1) the problem of forecasting solar flares (learning application) and 2) the desaturation problem of solar flare images (inverse problem application). The first application concerns the prediction of solar storms using images of the magnetic field on the sun, in particular physics-based features extracted from active regions from data provided by Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). The second application concerns the reconstruction problem of Extreme Ultra-Violet (EUV) solar flare images recorded by a second instrument on board SDO, the Atmospheric Imaging Assembly (AIA). We propose a novel sparsity-enhancing method SE-DESAT to reconstruct images affected by saturation and diffraction, without using any a priori estimate of the background solar activity
    corecore