808 research outputs found

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure

    Exploiting Superconvergence Through Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

    Get PDF
    There has been much work in the area of superconvergent error analysis for finite element and discontinuous Galerkin (DG) methods. The property of superconvergence leads to the question of how to exploit this information in a useful manner, mainly through superconvergence extraction. There are many methods used for superconvergence extraction such as projection, interpolation, patch recovery and B-spline convolution filters. This last method falls under the class of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. It has the advantage of improving both smoothness and accuracy of the approximation. Specifically, for linear hyperbolic equations it can improve the order of accuracy of a DG approximation from k + 1 to 2k + 1, where k is the highest degree polynomial used in the approximation, and can increase the smoothness to k − 1. In this article, we discuss the importance of overcoming the mathematical barriers in making superconvergence extraction techniques useful for applications, specifically focusing on SIAC filtering
    • …
    corecore