2,722 research outputs found

    Space-time adaptive finite elements for nonlocal parabolic variational inequalities

    Get PDF
    This article considers the error analysis of finite element discretizations and adaptive mesh refinement procedures for nonlocal dynamic contact and friction, both in the domain and on the boundary. For a large class of parabolic variational inequalities associated to the fractional Laplacian we obtain a priori and a posteriori error estimates and study the resulting space-time adaptive mesh-refinement procedures. Particular emphasis is placed on mixed formulations, which include the contact forces as a Lagrange multiplier. Corresponding results are presented for elliptic problems. Our numerical experiments for 22-dimensional model problems confirm the theoretical results: They indicate the efficiency of the a posteriori error estimates and illustrate the convergence properties of space-time adaptive, as well as uniform and graded discretizations.Comment: 47 pages, 20 figure

    Constructing solutions for a kinetic model of angiogenesis in annular domains

    Get PDF
    We prove existence and stability of solutions for a model of angiogenesis set in an annular region. Branching, anastomosis and extension of blood vessel tips are described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Our technique exploits balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.Comment: to appear in Applied Mathematical Modellin

    Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials

    Get PDF
    The paper arXiv:1804.11290 contains well-posedness and regularity results for a system of evolutionary operator equations having the structure of a Cahn-Hilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the Cahn-Hilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper arXiv:1807.03218, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called "deep quench" method. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.Comment: Key words: Fractional operators, Cahn-Hilliard systems, optimal control, double obstacles, necessary optimality condition

    Symmetrization for fractional Neumann problems

    Full text link
    In this paper we complement the program concerning the application of symmetrization methods to nonlocal PDEs by providing new estimates, in the sense of mass concentration comparison, for solutions to linear fractional elliptic and parabolic PDEs with Neumann boundary conditions. These results are achieved by employing suitable symmetrization arguments to the Stinga-Torrea local extension problems, corresponding to the fractional boundary value problems considered. Sharp estimates are obtained first for elliptic equations and a certain number of consequences in terms of regularity estimates is then established. Finally, a parabolic symmetrization result is covered as an application of the elliptic concentration estimates in the implicit time discretization scheme.Comment: 34 page

    Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application

    Full text link
    We develop further the theory of symmetrization of fractional Laplacian operators contained in recent works of two of the authors. The theory leads to optimal estimates in the form of concentration comparison inequalities for both elliptic and parabolic equations. In this paper we extend the theory for the so-called \emph{restricted} fractional Laplacian defined on a bounded domain Ω\Omega of RN\mathbb R^N with zero Dirichlet conditions outside of Ω\Omega. As an application, we derive an original proof of the corresponding fractional Faber-Krahn inequality. We also provide a more classical variational proof of the inequality.Comment: arXiv admin note: substantial text overlap with arXiv:1303.297

    Nonlinear Dirichlet problem for the nonlocal anisotropic operator LKL_K

    Get PDF
    In this paper we study an equation driven by a nonlocal anisotropic operator with homogeneous Dirichlet boundary conditions. We find at least three non trivial solutions: one positive, one negative and one of unknown sign, using variational methods and Morse theory. We present some results about regularity of solutions as LL^{\infty}-bound and Hopf's lemma, for the latter we first consider a non negative nonlinearity and then a strictly negative one. Moreover, we prove that, for the corresponding functional, local minimizers with respect to a C0C^0-topology weighted with a suitable power of the distance from the boundary are actually local minimizers in the X(Ω)X(\Omega)-topology
    corecore