3,016 research outputs found

    An embedded--hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present and analyze a new embedded--hybridized discontinuous Galerkin finite element method for the Stokes problem. The method has the attractive properties of full hybridized methods, namely an H(div)H({\rm div})-conforming velocity field, pointwise satisfaction of the continuity equation and \emph{a priori} error estimates for the velocity that are independent of the pressure. The embedded--hybridized formulation has advantages over a full hybridized formulation in that it has fewer global degrees-of-freedom for a given mesh and the algebraic structure of the resulting linear system is better suited to fast iterative solvers. The analysis results are supported by a range of numerical examples that demonstrate rates of convergence, and which show computational efficiency gains over a full hybridized formulation

    Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes

    Get PDF
    Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincar\'e inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes
    • …
    corecore