850 research outputs found

    A theoretical explanation for the Central Molecular Zone asymmetry

    Full text link
    It has been known for more than thirty years that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission comes from positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point-symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the "wiggle instability" and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of the time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.Comment: Accepted for publication in MNRAS. Videos of the simulations are available at http://www.ita.uni-heidelberg.de/~mattia/download.htm

    The Ellipsoid Factor for quantification of rods, plates and intermediate forms in 3D geometries

    Get PDF
    The Ellipsoid Factor (EF) is a method for the local determination of the rod- or plate-like nature of porous or spongy continua. EF at a point within a 3D structure is defined as the difference in axis ratios of the greatest ellipsoid which fits inside the structure and which contains the point of interest, and ranges from -1 for strongly oblate (discus-shaped) ellipsoids, to +1 for strongly prolate (javelin-shaped) ellipsoids. For an ellipsoid with axes a ≤ b ≤ c, EF = a/b – b/c. Here, EF is demonstrated in a Java plugin, Ellipsoid Factor for ImageJ, distributed in the BoneJ plugin collection. Ellipsoid Factor utilises an ellipsoid optimisation algorithm which assumes that maximal ellipsoids are centred on the medial axis, then dilates, rotates and translates slightly each ellipsoid until it cannot increase in volume any further. Ellipsoid Factor successfully identifies rods, plates and intermediate structures within trabecular bone, and summarises the distribution of geometries with an overall EF mean and standard deviation, EF histogram and Flinn diagram displaying a/b versus b/c. Ellipsoid Factor is released to the community for testing, use, and improvement

    Software framework for geophysical data processing, visualization and code development

    Get PDF
    IGeoS is an integrated open-source software framework for geophysical data processing under development at the UofS seismology group. Unlike other systems, this processing monitor supports structured multicomponent seismic data streams, multidimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. In this project, a modern and feature-rich Graphical User Interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments such as local area networks and Beowulf clusters. A 3D/2D interactive display server was created and integrated with the IGeoS geophysical data processing framework. With introduction of this major component, the IGeoS system becomes conceptually complete and potentially bridges the gap between the traditional processing and interpretation software. Finally, in a specialized application, network acquisition and relay components were written allowing IGeoS to be used for real-time applications. The completion of this functionality makes the processing and display capabilities of IGeoS available to multiple streams of seismic data from potentially remote sites. Seismic data can be acquired, transferred to the central server, processed, archived, and events picked and placed in database completely automatically

    Coupling Ground Penetrating Radar Applications with Continually Changing Decomposing Human Remains

    Get PDF
    Locating the clandestine burial of human remains has long perplexed law enforcement officials involved in crime scene investigations, and continues to bewilder all the scientific disciplines that have been incorporated into their search and recovery. Locating concealed human remains can often be compared to the proverbial search for a needle in the haystack. Many notable forensic specialists and law enforcement agencies, in an effort to alleviate some of the bewilderment that commonly accompanies the search for a buried body, suggest that multidisciplinary search efforts are becoming more of a necessity, and less of an option. Research at the University of Tennessee’s Anthropological Research Facility (ARF) in Knoxville supports this theory through a collaborative research effort directed toward the development of more efficient and effective methods in the search for, and detection of, buried human remains. The Department of Anthropology, in conjunction with the University’s Department of Biosystems Engineering and Environmental Science, has correlated the use of ground penetrating radar (GPR) with postmortem processes of decomposing human targets. Two and three dimensional imagery programs were utilized to optimize the analysis and interpretation of the data acquired over the past eight months. The processed images were then compared to models of human decompositional stages. The results of this research support and acknowledge that GPR is only capable of enhancing field methods in the search for clandestine burials, and when coupled with target-specific geophysical imagery software, contributes valuable working knowledge in regards to the contents of the burial itself. Hence, such resources can only be seen as beneficial to a search teams’ endeavors

    A minimal model for structure, dynamics, and tension of monolayered cell colonies

    Full text link
    The motion of cells in tissues is an ubiquitous phenomenon. In particular, in monolayered cell colonies in vitro, pronounced collective behavior with swirl-like motion has been observed deep within a cell colony, while at the same time, the colony remains cohesive, with not a single cell escaping at the edge. Thus, the colony displays liquid-like properties inside, in coexistence with a cell-free "vacuum" outside. How can adhesion be strong enough to keep cells together, while at the same time not jam the system in a glassy state? What kind of minimal model can describe such a behavior? Which other signatures of activity arise from the internal fluidity? We propose a novel active Brownian particle model with attraction, in which the interaction potential has a broad minimum to give particles enough wiggling space to be collectively in the fluid state. We demonstrate that for moderate propulsion, this model can generate the fluid-vacuum coexistence described above. In addition, the combination of the fluid nature of the colony with cohesion leads to preferred orientation of the cell polarity, pointing outward, at the edge, which in turn gives rise to a tensile stress in the colony -- as observed experimentally for epithelial sheets. For stronger propulsion, collective detachment of cell clusters is predicted. Further addition of an alignment preference of cell polarity and velocity direction results in enhanced coordinated, swirl-like motion, increased tensile stress and cell-cluster detachment

    Seismic Applications of Interactive Computational Methods

    Get PDF
    Effective interactive computing methods are needed in a number of specific areas of geophysical interpretation, even though the basic algorithms have been established. One approach to raise the quality of interpretation is to promote better interaction between human and the computer. The thesis is concerned with improving this dialog in three areas: automatic event picking, data visualization and sparse data imaging. Fully automatic seismic event picking methods work well in relatively good conditions. They collapse when the signal-to-noise ratio is low and the structure of the subsurface is complex. The interactive seismic event picking system described here blends the interpreter's guidance and judgment into the computer program, as it can bring the user into the loop to make subjective decisions when the picking problem is complicated. Several interactive approaches for 2-D event picking and 3-D horizon tracking have been developed. Envelope (or amplitude) threshold detection for first break picking is based on the assumption that the power of the signal is larger than that of the noise. Correlation and instantaneous phase pickers are designed for and better suited to picking other arrivals. The former is based on the cross-correlation function, and a model trace (or model traces) selected by the interpreter is needed. The instantaneous phase picker is designed to track spatial variations in the instantaneous phase of the analytic form of the arrival. The picking options implemented into the software package SeisWin were tested on real data drawn from many sources, such as full waveform sonic borehole logs, seismic reflection surveys and borehole radar profiles, as well as seven of the most recent 3-D seismic surveys conducted over Australian coal mines. The results show that the interactive picking system in SeisWin is efficient and tolerant. The 3-D horizon tracking method developed especially attracts industrial users. The visualization of data is also a part of the study, as picking accuracy, and indeed the whole of seismic interpretation depends largely on the quality of the final display. The display is often the only window through which an interpreter can see the earth's substructures. Display is a non-linear operation. Adjustments made to meet display deficiencies such as automatic gain control (AGC) have an important and yet ill-documented effect on the performance of pattern recognition operators, both human and computational. AGC is usually implemented in one dimension. Some of the tools in wide spread use for two dimensional image processing which are of great value in the local gain control of conventional seismic sections such as edge detectors, histogram equalisers, high-pass filters, shaded relief are discussed. Examples are presented to show the relative effectiveness of various display options. Conventional migration requires dense arrays with uniform coverage and uniform illumination of targets. There are, however, many instances in which these ideals can not be approached. Event migration and common tangent plane stacking procedures were developed especially for sparse data sets as a part of the research effort underlying this thesis. Picked-event migration migrates the line between any two points on different traces on the time section to the base map. The interplay between the space and time domain gives the interpreter an immediate view of mapping. Tangent plane migration maps the reflector by accumulating the energy from any two possible reflecting points along the common tangent lines on the space plane. These methods have been applied to both seismic and borehole-radar data and satisfactory results have been achieved

    Seismic Applications of Interactive Computational Methods

    Get PDF
    Effective interactive computing methods are needed in a number of specific areas of geophysical interpretation, even though the basic algorithms have been established. One approach to raise the quality of interpretation is to promote better interaction between human and the computer. The thesis is concerned with improving this dialog in three areas: automatic event picking, data visualization and sparse data imaging. Fully automatic seismic event picking methods work well in relatively good conditions. They collapse when the signal-to-noise ratio is low and the structure of the subsurface is complex. The interactive seismic event picking system described here blends the interpreter's guidance and judgment into the computer program, as it can bring the user into the loop to make subjective decisions when the picking problem is complicated. Several interactive approaches for 2-D event picking and 3-D horizon tracking have been developed. Envelope (or amplitude) threshold detection for first break picking is based on the assumption that the power of the signal is larger than that of the noise. Correlation and instantaneous phase pickers are designed for and better suited to picking other arrivals. The former is based on the cross-correlation function, and a model trace (or model traces) selected by the interpreter is needed. The instantaneous phase picker is designed to track spatial variations in the instantaneous phase of the analytic form of the arrival. The picking options implemented into the software package SeisWin were tested on real data drawn from many sources, such as full waveform sonic borehole logs, seismic reflection surveys and borehole radar profiles, as well as seven of the most recent 3-D seismic surveys conducted over Australian coal mines. The results show that the interactive picking system in SeisWin is efficient and tolerant. The 3-D horizon tracking method developed especially attracts industrial users. The visualization of data is also a part of the study, as picking accuracy, and indeed the whole of seismic interpretation depends largely on the quality of the final display. The display is often the only window through which an interpreter can see the earth's substructures. Display is a non-linear operation. Adjustments made to meet display deficiencies such as automatic gain control (AGC) have an important and yet ill-documented effect on the performance of pattern recognition operators, both human and computational. AGC is usually implemented in one dimension. Some of the tools in wide spread use for two dimensional image processing which are of great value in the local gain control of conventional seismic sections such as edge detectors, histogram equalisers, high-pass filters, shaded relief are discussed. Examples are presented to show the relative effectiveness of various display options. Conventional migration requires dense arrays with uniform coverage and uniform illumination of targets. There are, however, many instances in which these ideals can not be approached. Event migration and common tangent plane stacking procedures were developed especially for sparse data sets as a part of the research effort underlying this thesis. Picked-event migration migrates the line between any two points on different traces on the time section to the base map. The interplay between the space and time domain gives the interpreter an immediate view of mapping. Tangent plane migration maps the reflector by accumulating the energy from any two possible reflecting points along the common tangent lines on the space plane. These methods have been applied to both seismic and borehole-radar data and satisfactory results have been achieved

    The WiggleZ Dark Energy Survey: the selection function and z=0.6 galaxy power spectrum

    Get PDF
    We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate the characteristic imprint of peculiar velocities. We use these to determine the growth rate of structure as a function of redshift in the range 0.4 < z < 0.8, including a data point at z=0.78 with an accuracy of 20%. Our growth rate measurements are a close match to the self-consistent prediction of the LCDM model. The WiggleZ Survey data will allow a wide range of investigations into the cosmological model, cosmic expansion and growth history, topology of cosmic structure, and Gaussianity of the initial conditions. Our calculation of the survey selection function will be released at a future date via our website wigglez.swin.edu.au.Comment: 21 pages, 22 figures, accepted for publication in MNRA
    • …
    corecore