285 research outputs found

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201

    3D Face Reconstruction from Light Field Images: A Model-free Approach

    Full text link
    Reconstructing 3D facial geometry from a single RGB image has recently instigated wide research interest. However, it is still an ill-posed problem and most methods rely on prior models hence undermining the accuracy of the recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI) obtained from light field cameras and learn CNN models that recover horizontal and vertical 3D facial curves from the respective horizontal and vertical EPIs. Our 3D face reconstruction network (FaceLFnet) comprises a densely connected architecture to learn accurate 3D facial curves from low resolution EPIs. To train the proposed FaceLFnets from scratch, we synthesize photo-realistic light field images from 3D facial scans. The curve by curve 3D face estimation approach allows the networks to learn from only 14K images of 80 identities, which still comprises over 11 Million EPIs/curves. The estimated facial curves are merged into a single pointcloud to which a surface is fitted to get the final 3D face. Our method is model-free, requires only a few training samples to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single light field images under varying poses, expressions and lighting conditions. Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces reconstruction errors by over 20% compared to recent state of the art

    Aggressive saliency-aware point cloud compression

    Full text link
    The increasing demand for accurate representations of 3D scenes, combined with immersive technologies has led point clouds to extensive popularity. However, quality point clouds require a large amount of data and therefore the need for compression methods is imperative. In this paper, we present a novel, geometry-based, end-to-end compression scheme, that combines information on the geometrical features of the point cloud and the user's position, achieving remarkable results for aggressive compression schemes demanding very small bit rates. After separating visible and non-visible points, four saliency maps are calculated, utilizing the point cloud's geometry and distance from the user, the visibility information, and the user's focus point. A combination of these maps results in a final saliency map, indicating the overall significance of each point and therefore quantizing different regions with a different number of bits during the encoding process. The decoder reconstructs the point cloud making use of delta coordinates and solving a sparse linear system. Evaluation studies and comparisons with the geometry-based point cloud compression (G-PCC) algorithm by the Moving Picture Experts Group (MPEG), carried out for a variety of point clouds, demonstrate that the proposed method achieves significantly better results for small bit rates

    Fast Graph-Based Object Segmentation for RGB-D Images

    Full text link
    Object segmentation is an important capability for robotic systems, in particular for grasping. We present a graph- based approach for the segmentation of simple objects from RGB-D images. We are interested in segmenting objects with large variety in appearance, from lack of texture to strong textures, for the task of robotic grasping. The algorithm does not rely on image features or machine learning. We propose a modified Canny edge detector for extracting robust edges by using depth information and two simple cost functions for combining color and depth cues. The cost functions are used to build an undirected graph, which is partitioned using the concept of internal and external differences between graph regions. The partitioning is fast with O(NlogN) complexity. We also discuss ways to deal with missing depth information. We test the approach on different publicly available RGB-D object datasets, such as the Rutgers APC RGB-D dataset and the RGB-D Object Dataset, and compare the results with other existing methods

    A Unified BEV Model for Joint Learning of 3D Local Features and Overlap Estimation

    Full text link
    Pairwise point cloud registration is a critical task for many applications, which heavily depends on finding correct correspondences from the two point clouds. However, the low overlap between input point clouds causes the registration to fail easily, leading to mistaken overlapping and mismatched correspondences, especially in scenes where non-overlapping regions contain similar structures. In this paper, we present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation to fulfill pairwise registration and loop closure. Feature description is performed by a sparse UNet-like network based on BEV representation, and 3D keypoints are extracted by a detection head for 2D locations, and a regression head for heights. For overlap detection, a cross-attention module is applied for interacting contextual information of input point clouds, followed by a classification head to estimate the overlapping region. We evaluate our unified model extensively on the KITTI dataset and Apollo-SouthBay dataset. The experiments demonstrate that our method significantly outperforms existing methods on overlap estimation, especially in scenes with small overlaps. It also achieves top registration performance on both datasets in terms of translation and rotation errors.Comment: 8 pages. Accepted by ICRA-202
    • …
    corecore