169,687 research outputs found

    Point-of-Interest Recommendation Algorithm Based on User Similarity in Location-Based Social Networks

    Get PDF
    Location-based social network is rising recent years with the development of mobile internet, and point-of-interest (POI) recommendation is a hot topic of this field. Because the factors that affect the behavior of users are very complex, most of the research focuses on the context of the recommendation. But overall context data acquisition in practice is often difficult to obtain. In this paper, we have considered the most common collaborative recommendation algorithm based on user similarity, and discussed several methods of user similarity definition. Comparing the effect of different methods in the actual dataset, experimental results show among the factors including that social relation, check-in and geographical location the check-in is extremely important, so this work is of certain guiding significance to the actual applications

    Review of Point of Interest Recommendation Systems in Location-Based Social Networks

    Get PDF
    Point of interest recommendation is recently one of the hotspots in the field of location-based social networks and recommendation systems. Understanding the research status of the point of interest recommendation in location-based social networks can provide a direction for the next step of work. The recent literatures of the point of interest recommendation systems are analyzed. Firstly, the definition is introduced, and the difference from traditional recommendation is discussed from three aspects: influencing factors, recommendation approaches and existing problems. Secondly, the general framework of the point of interest recommendation is proposed, which includes data sources, recommendation approaches and evaluation. Based on this framework, the various influencing factors are introduced, the current recommendation algorithms are generalized, and the evaluation metrics are summarized. Meanwhile, the representative works are analyzed, the research contents and characteristics of each type of methods are summarized in detail, and their advantages and limitations are evaluated. Finally, the challenges and potential directions for possible extensions in this filed are summarized and prospected, and the future research trends and development directions are concluded

    On Information Coverage for Location Category Based Point-of-Interest Recommendation

    Get PDF
    Point-of-interest(POI) recommendation becomes a valuable service in location-based social networks. Based on the norm that similar users are likely to have similar preference of POIs, the current recommendation techniques mainly focus on users' preference to provide accurate recommendation results. This tends to generate a list of homogeneous POIs that are clustered into a narrow band of location categories(like food, museum, etc.) in a city. However, users are more interested to taste a wide range of flavors that are exposed in a global set of location categories in the city.In this paper, we formulate a new POI recommendation problem, namely top-K location category based POI recommendation, by introducing information coverage to encode the location categories of POIs in a city.The problem is NP-hard. We develop a greedy algorithm and further optimization to solve this challenging problem. The experimental results on two real-world datasets demonstrate the utility of new POI recommendations and the superior performance of the proposed algorithms

    Personalized ranking metric embedding for next new POI recommendation

    Get PDF
    The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods

    Using function approximation for personalized point-of-interest recommendation

    Get PDF
    Point-of-interest (POI) recommender system encourages users to share their locations and social experience through check-ins in online location-based social networks. A most recent algorithm for POI recommendation takes into account both the location relevance and diversity. The relevance measures users’ personal preference while the diversity considers location categories. There exists a dilemma of weighting these two factors in the recommendation. The location diversity is weighted more when a user is new to a city and expects to explore the city in the new visit. In this paper, we propose a method to automatically adjust the weights according to user’s personal preference. We focus on investigating a function between the number of location categories and a weight value for each user, where the Chebyshev polynomial approximation method using binary values is applied. We further improve the approximation by exploring similar behavior of users within a location category. We conduct experiments on five real-world datasets, and show that the new approach can make a good balance of weighting the two factors therefore providing better recommendation

    A Cascade Framework for Privacy-Preserving Point-of-Interest Recommender System

    Get PDF
    Point-of-interest (POI) recommender systems (RSes) have gained significant popularity in recent years due to the prosperity of location-based social networks (LBSN). However, in the interest of personalization services, various sensitive contextual information is collected, causing potential privacy concerns. This paper proposes a cascaded privacy-preserving POI recommendation (CRS) framework that protects contextual information such as user comments and locations. We demonstrate a minimized trade-off between the privacy-preserving feature and prediction accuracy by applying a semi-decentralized model to real-world datasets

    CoSoLoRec: Joint factor model with content, social, location for heterogeneous point-of-interest recommendation

    Full text link
    © Springer International Publishing AG 2016. The pervasive use of Location-based Social Networks calls for more precise Point-of-Interest recommendation. The probability of a user’s visit to a target place is influenced by multiple factors. Though there are several fusion models in such fields, heterogeneous information are not considered comprehensively. To this end, we propose a novel probabilistic latent factor model by jointly considering the social correlation, geographical influence and users’ preference. To be specific, a variant of Latent Dirichlet Allocation is leveraged to extract the topics of both user and POI from reviews which is denoted as explicit interest. Then, Probabilistic Latent Factor Model is introduced to depict the implicit interest. Moreover, Kernel Density Estimation and friend-based Collaborative Filtering are leveraged to model user’s geographic allocation and social correlation respectively. Thus, we propose CoSoLoRec, a fusion framework, to ameliorate the recommendation. Experiments on two real-word datasets show the superiority of our approach over the state-of-the-art methods
    • …
    corecore