4,729 research outputs found

    Point compression for the trace zero subgroup over a small degree extension field

    Get PDF
    Using Semaev's summation polynomials, we derive a new equation for the Fq\mathbb{F}_q-rational points of the trace zero variety of an elliptic curve defined over Fq\mathbb{F}_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.Comment: 23 pages, to appear in Designs, Codes and Cryptograph

    Scalar multiplication in compressed coordinates in the trace-zero subgroup

    Get PDF
    We consider trace-zero subgroups of elliptic curves over a degree three field extension. The elements of these groups can be represented in compressed coordinates, i.e. via the two coefficients of the line that passes through the point and its two Frobenius conjugates. In this paper we give the first algorithm to compute scalar multiplication in the degree three trace-zero subgroup using these coordinates.Comment: 23 page

    Efficient algorithms for pairing-based cryptosystems

    Get PDF
    We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics.We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairing-based cryptography

    A Generic Approach to Searching for Jacobians

    Full text link
    We consider the problem of finding cryptographically suitable Jacobians. By applying a probabilistic generic algorithm to compute the zeta functions of low genus curves drawn from an arbitrary family, we can search for Jacobians containing a large subgroup of prime order. For a suitable distribution of curves, the complexity is subexponential in genus 2, and O(N^{1/12}) in genus 3. We give examples of genus 2 and genus 3 hyperelliptic curves over prime fields with group orders over 180 bits in size, improving previous results. Our approach is particularly effective over low-degree extension fields, where in genus 2 we find Jacobians over F_{p^2) and trace zero varieties over F_{p^3} with near-prime orders up to 372 bits in size. For p = 2^{61}-1, the average time to find a group with 244-bit near-prime order is under an hour on a PC.Comment: 22 pages, to appear in Mathematics of Computatio

    Isogeny-based post-quantum key exchange protocols

    Get PDF
    The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH), a post-quantum key exchange protocol which security lies on the isogeny-finding problem between supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with the existence of the model of quantum computation. We review some of the known attacks on the SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented

    On the essential dimension of central simple algebras

    Get PDF
    The essential dimension of an algebraic object is a formalization of the familiar concept of minimal number of 'parameters' needed to describe it and thus gives an idea of the complexity of its structure. This thesis is concerned with the essential dimension of central simple algebras. In the first part I describe the general theory of central simple algebras and essential dimension, while in the second I present the best bounds to the essential dimension of central simple algebras obtained so far, mainly due to Z.Reichstein and A.Merkurjev
    corecore