281,030 research outputs found

    Point sample rendering

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 54-56).We present an algorithm suitable for real-time, high quality rendering of complex objects. Objects are represented as a dense set of surface point samples which contain colour, depth and normal information. These point samples are obtained by sampling orthographic views on an equilateral triangle lattice. They are rendered directly and independently without any knowledge of surface topology. We introduce a novel solution to the problem of surface reconstruction using a hierarchy of Z-buffers to detect tears. The algorithm is fast, easily vectorizable, and requires only modest resources.by J.P. Grossman.S.M

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees

    Get PDF
    We present an efficient technique for out-of-core multi-resolution construction and high quality interactive visualization of massive point clouds. Our approach introduces a novel hierarchical level of detail (LOD) organization based on multi-way kd-trees, which simplifies memory management and allows control over the LOD-tree height. The LOD tree, constructed bottom up using a fast high-quality point simplification method, is fully balanced and contains all uniformly sized nodes. To this end, we introduce and analyze three efficient point simplification approaches that yield a desired number of high-quality output points. For constant rendering performance, we propose an efficient rendering-on-a-budget method with asynchronous data loading, which delivers fully continuous high quality rendering through LOD geo-morphing and deferred blending. Our algorithm is incorporated in a full end-to-end rendering system, which supports both local rendering and cluster-parallel distributed rendering. The method is evaluated on complex models made of hundreds of millions of point sample

    Analysis of Sample Correlations for Monte Carlo Rendering

    Get PDF
    Modern physically based rendering techniques critically depend on approximating integrals of high dimensional functions representing radiant light energy. Monte Carlo based integrators are the choice for complex scenes and effects. These integrators work by sampling the integrand at sample point locations. The distribution of these sample points determines convergence rates and noise in the final renderings. The characteristics of such distributions can be uniquely represented in terms of correlations of sampling point locations. Hence, it is essential to study these correlations to understand and adapt sample distributions for low error in integral approximation. In this work, we aim at providing a comprehensive and accessible overview of the techniques developed over the last decades to analyze such correlations, relate them to error in integrators, and understand when and how to use existing sampling algorithms for effective rendering workflows.publishe

    Soft bilateral filtering shadows using multiple image-based algorithms

    Get PDF
    This study introduces Soft Bilateral Filtering Shadows method of dynamic scenes, which uses multi-matrices of the light sample points due to lack realism in soft shadows generation in real time. While geometry-based shadow algorithm requires one pass per polygon for rendering shadow that requires time-consuming, the adopted shadow map algorithm needs a single rendering pass for each sample point of the light source to generate shadow at low cost. This method renders a complex scenes and accurately eliminating the inherent deficiencies in shadow maps. In order to compute shadow maps, view matrices were used for each sample point of the extended light source. Then penumbra region was used for interpolation based on bilateral filtering to create the soft shadows. They depend on multiple shadow maps which provide antialiasing shadow maps. The method uses fragment shader for rendering multiple shadow maps with penumbra and umbra regions. The main contribution of this article is introducing interpolation bilaterally of image-based shadows. This method makes the most effect of the computation significantly appear at the edges of the penumbra region. Furthermore, the filtering allows to obtain on the soft shadow marvelously at the lowest number possible of the light sample points. The generated soft shadows have good performance and high quality therefore, they are suitable for interactive applications. © 2016 Springer Science+Business Media New Yor

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Practical acquisition and rendering of diffraction effects in surface reflectance

    Get PDF
    We propose two novel contributions for measurement based rendering of diffraction effects in surface reflectance of planar homogeneous diffractive materials. As a general solution for commonly manufactured materials, we propose a practical data-driven rendering technique and a measurement approach to efficiently render complex diffraction effects in real-time. Our measurement step simply involves photographing a planar diffractive sam- ple illuminated with an LED flash. Here, we directly record the resultant diffraction pattern on the sample surface due to a narrow band point source illumination. Furthermore, we propose an efficient rendering method that exploits the measurement in conjunction with the Huygens-Fresnel principle to fit relevant diffraction parameters based on a first order approximation. Our proposed data-driven rendering method requires the precomputation of a single diffraction look up table for accurate spectral rendering of com- plex diffraction effects. Secondly, for sharp specular samples, we propose a novel method for practical measurement of the underlying diffraction grating using out-of-focus “bokeh” photography of the specular highlight. We demonstrate how the measured bokeh can be employed as a height field to drive a diffraction shader based on a first order approximation for efficient real-time rendering. Finally, we also drive analytic solutions for a few special cases of diffraction from our measurements and demonstrate realistic rendering results under complex light sources and environments

    Interactive Sampling and Rendering for Complex and Procedural Geometry

    Get PDF
    International audienceWe present a new sampling method for procedural and complex geometries, which allows interactive point-based modeling and rendering of such scenes. For a variety of scenes, object-space point sets can be generated rapidly, resulting in a sufficiently dense sampling of the final image. We present an integrated approach that exploits the simplicity of the point primitive. For procedural objects a hierarchical sampling scheme is presented that adapts sample densities locally according to the projected size in the image. Dynamic procedural objects and interactive user manipulation thus become possible. The same scheme is also applied to on-the-fly generation and rendering of terrains, and enables the use of an efficient occlusion culling algorithm. Furthermore, by using points the system enables interactive rendering and simple modification of complex objects (e.g., trees). For display, hardware-accelerated 3-D point rendering is used, but our sampling method can be used by any other point-rendering approach
    corecore