7,035 research outputs found

    Government Clean Air Regulations and Tesla Motors

    Get PDF

    Green Electricity and Transportation (GET) Smart: Policy Solutions to Increase Energy Independence

    Get PDF
    Ohioans spend a large amount of money on energy. In 2010, we spent 45billion,nearly10percentofourstateâ€Čsgrossdomesticproduct.Nearlyhalfofthoseenergydollars(ormorethan45 billion, nearly 10 percent of our state's gross domestic product. Nearly half of those energy dollars (or more than 20 billion) was spent to fuel cars, trucks, and buses, and nearly all of which left the state or country in order to import oil. Ohio can reduce its dependence on imported oil by promoting electric vehicles (EVs) and buses, as well as passenger and freight rail

    Transportation Futures: Policy Scenarios for Achieving Greenhouse Gas Reduction Targets, MNTRC Report 12-11

    Get PDF
    It is well established that GHG emissions must be reduced by 50% to 80% by 2050 in order to limit global temperature increase to 2°C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of policies and technology options. The research presented here analyzes three scenarios: changes in the perceived price of travel, land-use intensification, and increases in transit. Elasticity estimates are derived using an activity-based travel model for the state of California and broadly representative of the U.S. The VISION model is used to forecast changes in technology and fuel options that are currently forecast to occur in the U.S., providing a life cycle GHG forecast for the road transportation sector. Results suggest that aggressive policy action is needed, especially pricing policies, but also more on the technology side. Medium- and heavy-duty vehicles are in particular need of additional fuel or technology-based GHG reductions

    Minimising carbon emissions and energy expended for the New Zealand transport sector through to 2050

    Get PDF
    Carbon Emissions Pinch Analysis (CEPA) and Energy Return on Energy Investment (EROI) analysis are combined to investigate the feasibility of New Zealand (NZ) reaching a 1990 emission levels for transport in 2050. The transportation sector traditionally has been a difficult area to transition to high levels of renewable energy because of the strong dependency on fossil fuels. Multiple scenarios for reducing transport emissions are analysed. With NZ’s unique mix of renewable energy resources the analysis demonstrates that NZ is in a very good position to sustainably meet their future transport needs provided substantial commitment is made to transition light vehicle fleet to hybrid vehicles, plug-in hybrids vehicles and electric vehicles by 2050. Electrification of rail within and between major centres will also require major political commitment. The resulting increase in electricity demand for transport is 3.6 TWh (or 4.8 % of electricity generation in NZ). We show the minimum amount of biofuel renewable production to achieve the goal of 1990 emissions level in 2050 is 46 PJ. Delivering 46 PJ is expected to be well within the potential biofuel production capacity of NZ. The delivery of economically competitive renewable liquid biofuels will also require close cooperation and system integration with other energy systems like the electricity sector and industrial process heat sector

    Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/)The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low cost vehicle is available we find that the PHEV has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation and the size of the vehicle fleet. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.BP Conversion Research Project and the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants

    Sharpening the Cutting Edge: Corporate Action for a Strong, Low-Carbon Economy

    Get PDF
    Outlines lessons learned from early efforts to create a low-carbon economy, current and emerging best practices, and next steps, including climate change metrics, greenhouse gas reporting, effective climate policy, and long-term investment choices

    Electric vehicle possibilities using low power and light weight range extenders

    Get PDF
    Electric cars have the disadvantage of a limited range, and drivers may experience a range anxiety. This range anxiety can be solved by adding a range extender. But, the range extender should be light so as not to significantly increase the weight of the original vehicle. In urban areas with dense traffic (usually developing countries), the average speed around cities is typically lower than 50km/h. This means, the rolling resistance losses are more important than aerodynamic losses, and a weight reduction results in a bigger electrical range. Therefore, smaller and lighter range extenders are of much interest. The contribution of this paper is to indicate the possibility of range extenders with less than 25 kg with a capacity of 150 to 200 cc to suit a condition where weight counts. In this paper, the cost, environmental and grid impacts of going electric are also discussed. The effect of high altitude and driving style on the performance of an electric vehicle is assessed. The challenges and opportunities of vehicle electrification between countries with decarbonated power generation and fossil fuel dominated power generation are highlighted. Throughout the article, the case of Ethiopia is taken as an example

    Electric Vehicles: Charging into the Future

    Get PDF
    Electric vehicle drives offer a number of advantages over conventional internal combustion engines, especially in terms of lower local emissions, higher energy efficiency, and decreased dependency upon oil. Yet there are significant barriers to the rapid adoption of electric cars, including the limitations of battery technology, high purchase costs, and the lack of recharging infrastructure. With intelligently controlled charging operations, the energy needs of potential electric vehicle fleets could be covered by existing German power plants without incurring large price fluctuations. Over the long term, electric vehicles could represent a sustainable technology path. In the short to mid-term, however, exceedingly optimistic expectations should be avoided, especially with respect to the reduction of greenhouse gas emissions. Electric vehicles as such will not be able to solve all current problems of transportation policy. Yet they may constitute an important component of a larger roadmap for sustainable transportation.Transportation, Electric vehicles, Electricity markets
    • 

    corecore