119 research outputs found

    On-board electric vehicle battery charger with enhanced V2H operation mode

    Get PDF
    This paper proposes an on-board Electric Vehicle (EV) battery charger with enhanced Vehicle-to-Home (V2H) operation mode. For such purpose was adapted an on-board bidirectional battery charger prototype to allow the Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G) and V2H operation modes. Along the paper are presented the hardware topology and the control algorithms of this battery charger. The idea underlying to this paper is the operation of the on-board bidirectional battery charger as an energy backup system when occurs a power outages. For detecting the power outage were compared two strategies, one based on the half-cycle rms calculation of the power grid voltage, and another in the determination of the rms value based in a Kalman filter. The experimental results were obtained considering the on-board EV battery charger under the G2V, V2G, and V2H operation modes. The results show that the power outage detection is faster using a Kalman filter, up to 90% than the other strategy. This also enables a faster transition between operation modes when a power outage occurs.Fundação para a Ciência e Tecnologia (FCT), Project Scope: Pest OE/EEI/UI0319/20

    Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes

    Get PDF
    This paper presents the main operation modes for an electric vehicle (EV) battery charger framed in smart grids and smart homes, i.e., are discussed the present-day and are proposed new operation modes that can represent an asset towards EV adoption. Besides the well-known grid to vehicle (G2V) and vehicle to grid (V2G), this paper proposes two new operation modes: Home-to-vehicle (H2V), where the EV battery charger current is controlled according to the current consumption of the electrical appliances of the home (this operation mode is combined with the G2V and V2G); Vehicle-for-grid (V4G), where the EV battery charger is used for compensating current harmonics or reactive power, simultaneously with the G2V and V2G operation modes. The vehicle-to-home (V2H) operation mode, where the EV can operate as a power source in isolated systems or as an off-line uninterruptible power supply to feed priority appliances of the home during power outages of the electrical grid is presented in this paper framed with the other operation modes. These five operation modes were validated through experimental results using a developed 3.6 kW bidirectional EV battery charger prototype, which was specially designed for these operation modes. The paper describes the developed EV battery charger prototype, detailing the power theory and the voltage and current control strategies used in the control system. The paper presents experimental results for the various operation modes, both in steady-state and during transients

    Improved vehicle-to-home (iV2H) operation mode: experimental analysis of the electric vehicle as off-line UPS

    Get PDF
    This paper presents experimental results of electric vehicle (EV) operation as an off-line uninterruptible power supply (UPS). Besides the traditional grid-to-vehicle and vehicle-to-grid modes, this paper presents an improved vehicle-to-home operation mode. This new operation mode consists of the detection of a power outage in the power grid and the change of the EV battery charger control to operate as an off-line UPS. When the power grid voltage is restored, the voltage produced by the on-board EV battery charger is slowly synchronized with the power grid voltage before a complete transition to the normal mode. This paper presents results of two algorithms to detect a power outage: the root mean square (rms) calculation method based on half-cycle of the power grid voltage, and the rms estimation based on a Kalman filter. The experimental results were obtained in steady and transient state considering two cases with the EV plugged in at home:when charging the batteries and without charging the batteries. This paper describes the EV battery charger, the power outage detection methods, and the voltage and current control strategies.- This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) in the scope of the projects under Grant PEst-UID/CEC/00319/2013. The work of V. Monteiro was supported by the Doctoral Scholarship through the Portuguese FCT Agency under Grant SFRH/BD/80155/2011. The work of B. Exposto was supported by the Doctoral Scholarship through the Portuguese FCT Agency under Grant SFRH/BD/87999/2012.info:eu-repo/semantics/publishedVersio

    Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles

    Get PDF
    Nowadays, due to the increasing number of disasters, improving distribution system resiliency is a new challenging issue for researchers. One of the main methods for improving the resiliency in distribution systems is to supply critical loads after disasters during the power outage and before system restorations. In this paper, a “Sustainable and resilient smart house” is introduced for the first time by using plug-in hybrid electric vehicles (PHEVs). PHEVs have the ability to use their fuel for generating electricity in emergency situations as the Vehicle to Grid (V2G) scheme. This ability, besides smart house control management, provides an opportunity for distribution system operators to use their extra energy for supplying a critical load in the system. The proposed control strategy in this paper is dedicated to a short duration power outage, which includes a large percent of the events. Then, improvement of the resiliency of distribution systems is investigated through supplying smart residential customers and injecting extra power to the main grid. A novel formulation is proposed for increasing the injected power of the smart house to the main grid using PHEVs. The effectiveness of the proposed method in increasing power injection during power outages is shown in simulation results.©2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, http://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Improved voltage control for the electric vehicle operation in V2H mode as an off-line UPS in the context of smart homes

    Get PDF
    As a contribution for sustainability, electric vehicles (EVs) are seen as one of the most effective influences in the transport sector. This paper proposes an improved voltage control of the EV operating as uninterruptible power supply (UPS) in smart homes. With the EV plugged-in into the smart home, it can act as an off-line UPS protecting the electrical appliances from power grid outages. The foremost advantages of the proposed voltage control strategy are comprehensively emphasized, establishing a comparison with the classical approach. Aiming to offer a sinusoidal voltage for linear and nonlinear electrical appliances, a pulse width modulation with a multi-loop control scheme is used. A Kalman filter is used for decreasing significantly the time of detecting power outages and, consequently, the transition for the UPS mode. The computer simulations and the acquired experimental results validate the proposed strategy in different conditions of operation.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    The Strategies of EV Charge/Discharge Management in Smart Grid Vehicle-to-Everything (V2X) Communication Networks

    Get PDF
    Electric vehicles (EVs) are at the forefront of the revolutionized eco-friendly invention in the transportation industry. With automated metering infrastructure (AMI) communications in houses, smart EV charging stations, and smart building management systems in smart grid-oriented power system, EVs are expected to contribute substantially in overall energy planning and management both in the grid and the customer premises. This chapter investigates and provides an in-depth analysis on the charge/discharge management of EV in vehicle to home (V2H), vehicle to drive (V2D), vehicle to vehicle (V2V), vehicle to grid (V2G), vehicle-to-building (V2B), and grid to vehicle (G2V). The planning and control of energy exchange of EV is the main focus considering EV availability in multiple places during the daytime and in the evening. Indisputably, EV participating in V2G or V2H affects the state of charge (SOC) of EV battery, and therefore proper scheduled charge/discharge plan needs to be embraced. The structures of EV in various operation modes and approaches are presented for implementing the energy planning and charge/discharge management of EV in different operation modes. The simulation results demonstrate the effectiveness of the proposed charge/discharge management strategy and regulation of EV SOC in accordance with the energy management plan of EV owner

    Improved voltage control of the electric vehicle operating as UPS in smart homes

    Get PDF
    As a contribution for sustainability, electric vehicles (EVs) are seen as one of the most effective influences in the transport sector. As complement to the challenges that entails the EVs integration into the grid considering the bidirectional operation (grid-to-vehicle and vehicle-to-grid), there are new concepts associated with the EV operation integrating various benefits for smart homes. In this sense, this paper proposes an improved voltage control of the EV operating as uninterruptible power supply (UPS) in smart homes. With the EV plugged-in into the smart home, it can act as an off-line UPS protecting the electrical appliances from power grid outages. Throughout the paper, the foremost advantages of the proposed voltage control strategy are comprehensively emphasized, establishing a comparison with the classical approach. Aiming to offer a sinusoidal voltage for linear and nonlinear electrical appliances, a pulse-width modulation with a multi-loop control scheme is used. A Kalman filter is used for decreasing significantly the time of detecting power outages and, consequently, the transition for the UPS mode. The experimental validation was executed with a bidirectional charger containing a double stage power conversion (an ac-dc interfacing the grid-side and a dc-dc interfacing the batteries- side) and a digital stage. The computer simulations and the acquired experimental results validate the proposed strategy in different conditions of operation.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283.info:eu-repo/semantics/publishedVersio
    corecore