26 research outputs found

    Plug, Plan and Produce as Enabler for Easy Workcell Setup and Collaborative Robot Programming in Smart Factories

    Get PDF
    Wojtynek M, Steil JJ, Wrede S. Plug, Plan and Produce as Enabler for Easy Workcell Setup and Collaborative Robot Programming in Smart Factories. KI - KĂĽnstliche Intelligenz. German Journal of Artificial Intelligence. 2019;33(2):151-161.The transformation of today's manufacturing lines into truly adaptive systems facilitating individualized mass production requires new approaches for the efficient integration, configuration and control of robotics and automation components. Recently, various types of Plug-and-Produce architectures were proposed that support the discovery, integration and configuration of field devices, automation equipment or industrial robots during commissioning or even operation of manufacturing systems. However, in many of these approaches, the configuration possibilities are limited, which is a particular problem if robots operate in dynamic environments with constrained workspaces and exchangeable automation components as typically required for flexible manufacturing processes. In this article, we introduce an extended Plug-and-Produce concept based on dynamic motion planning, co-simulation and a collaborative human-robot interaction scheme that facilitates the quick adaptation of robotics behaviors in the context of a modular production system. To confirm our hypothesis on the efficiency and usability of this concept, we carried out a feasibility study where participants performed a flexible workcell setup. The results indicate that the assistance and features for planning effectively support the users in tasks of different complexity and that a quick adaption is indeed possible. Based on our observations, we identify further research challenges in the context of Plug, Plan and Produce applied to smart manufacturing

    Technical Maturity for Industrial Deployment of Robot Demonstrators

    Get PDF
    Any technical development done in the context of agile manufacturing has limited benefit if it's not industrially utilized. This requires maturing the developed technologies to a point that they are robust enough to provide a productivity boost, while at the same time adhering to the relevant industrial standards. In this paper we present the various stages in which different robot demonstrators were able to achieve the required technical maturity for industrial deployment. We present the context about the importance of developing technologies that facilitate agile manufacturing followed by the gap between the state of the art and the state of the practice, due to which many promising technologies do not end up being deployed in the industry as they were not subjected to maturity actions required for the transition. We present the journey of four industrial demonstrators that bridged this gap. Furthermore, we provide the assessment methods to ascertain the iterative developmental steps, and present a generic approach to improve the technological readiness.acceptedVersionPeer reviewe

    Worker-robot cooperation and integration into the manufacturing workcell via the holonic control architecture

    Get PDF
    Cooperative manufacturing is a new field of research, which addresses new challenges beyond the physical safety of the worker. Those new challenges appear due to the need to connect the worker and the cobot from the informatics point of view in one cooperative workcell. This requires developing an appropriate manufacturing control system, which fits the nature of both the worker and the cobot. Furthermore, the manufacturing control system must be able to understand the production variations, to guide the cooperation between worker and the cobot and adapt with the production variations.Die kooperative Fertigung ist ein neues Forschungsgebiet, das sich neuen Herausforderungen stellt. Diese neuen Herausforderungen ergeben sich aus der Notwendigkeit, den Arbeiter und den Cobot aus der Sicht der Informatik in einem kooperativen Arbeitsplatz zu verbinden. Dies erfordert die Entwicklung eines geeigneten Produktionskontrollsystems, das sowohl der Natur des Arbeiters als auch der des Cobots entspricht. DarĂĽber hinaus muss die Fertigungssteuerung in der Lage sein, die Produktionsschwankungen zu verstehen, um die Zusammenarbeit zwischen Arbeiter und Cobot zu steuern

    An Overview of Industrial Robots Control and Programming Approaches

    Get PDF
    Nowadays, manufacturing plants are required to be flexible to respond quickly to customer demands, adapting production and processes without affecting their efficiency. In this context, Industrial Robots (IRs) are a primary resource for modern factories due to their versatility which allows the execution of flexible, reconfigurable, and zero-defect manufacturing tasks. Even so, the control and programming of the commercially available IRs are limiting factors for their effective implementation, especially for dynamic production environments or when complex applications are required. These issues have stimulated the development of new technologies that support more efficient methods for robot control and programming. The goal of this research is to identify and evaluate the main approaches proposed in scientific papers and by the robotics industry in the last decades. After a critical review of the standard IR control schematic, the paper discusses the available control alternatives and summarizes their characteristics, range of applications, and remaining limitations

    Interdisziplinäre Produktentwicklung: Beschreibung einer Kooperation aus Industrie, angewandter Forschung und Technischem Design zur Realisierung einer assistierenden Roboterzelle

    Get PDF
    Kollaborative Robotik wird in der Regel als eine, den Anwender entlastende, Komponente in einem Mensch-Maschine-Szenario verstanden. Dabei wird in einer bisher nicht automatisierten Arbeitsumgebung eine Teilautomatisierung nachgerüstet. Für die Entwicklung derartiger Systeme ist neben dem Anwender und seinen Anforderungen auch eine hohe Passfähigkeit zu unterschiedlichen Bestandssystemen ausschlaggebend. Dieses Paper dokumentiert interdisziplinäre Zusammenarbeit zwischen Industrie, angewandter Forschung und Technischem Design, um Kernanforderungen an Automatisierungslösungen für bestehende Werkzeugmaschinen zusammenzutragen. In einem industriellen Automatisierungsszenario entstand eine mobile Roboterzelle mit einem hängenden Roboter sowie einem Palettenspeicher zur Maschinenbeschickung. Vor- und Nachbearbeitungen sind in einheitlichen Fähigkeitsmodulen gekapselt. Maschine und Bauteile werden über ein intelligentes Bildverarbeitungssystem lokalisiert. Diese Referenzierung ermöglicht nach einmaligem Teachen das Nachführen der Roboterbewegungen bei einer Neukonfiguration. Ergänzt wird die Lösung durch ein schutzzaunloses Sicherheitskonzept und eine bedienerführende Benutzeroberfläche zur Fähigkeitskomposition. Mit der Automatisierungslösung können mittelständische Unternehmen bei Personalengpässen die Produktivität aufrechterhalten und Mitarbeiter von monotonen Tätigkeiten entlasten

    A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future

    Get PDF
    In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.The present work was developed under the EUREKA–ITEA3 Project CyberFactory#1 (ITEA-17032), co-funded by Project CyberFactory#1PT (ANI|P2020 40124), from FEDER Funds through NORTE2020 program and from National Funds through FCT under the project UID/EEA/00760/2019 and by the Federal Ministry of Education and Research (BMBF, Germany, funding No. 01IS18061C).info:eu-repo/semantics/publishedVersio

    Daydreaming factories

    Get PDF
    Optimisation of factories, a cornerstone of production engineering for the past half century, relies on formulating the challenges with limited degrees of freedom. In this paper, technological advances are reviewed to propose a “daydreaming” framework for factories that use their cognitive capacity for looking into the future or “foresighting”. Assessing and learning from the possible eventualities enable breakthroughs with many degrees of freedom and make daydreaming factories antifragile. In these factories with augmented and reciprocal learning and foresighting processes, revolutionary reactions to external and internal stimuli are unnecessary and industrial co-evolution of people, processes and products will replace industrial revolutions

    A Common Digital Twin Platform for Education, Training and Collaboration

    Get PDF
    The world is in transition driven by digitalization; industrial companies and educational institutions are adopting Industry 4.0 and Education 4.0 technologies enabled by digitalization. Furthermore, digitalization and the availability of smart devices and virtual environments have evolved to pro- duce a generation of digital natives. These digital natives whose smart devices have surrounded them since birth have developed a new way to process information; instead of reading literature and writing essays, the digital native generation uses search engines, discussion forums, and on- line video content to study and learn. The evolved learning process of the digital native generation challenges the educational and industrial sectors to create natural training, learning, and collaboration environments for digital natives. Digitalization provides the tools to overcome the aforementioned challenge; extended reality and digital twins enable high-level user interfaces that are natural for the digital natives and their interaction with physical devices. Simulated training and education environments enable a risk-free way of training safety aspects, programming, and controlling robots. To create a more realistic training environment, digital twins enable interfacing virtual and physical robots to train and learn on real devices utilizing the virtual environment. This thesis proposes a common digital twin platform for education, training, and collaboration. The proposed solution enables the teleoperation of physical robots from distant locations, enabling location and time-independent training and collaboration in robotics. In addition to teleoperation, the proposed platform supports social communication, video streaming, and resource sharing for efficient collaboration and education. The proposed solution enables research collaboration in robotics by allowing collaborators to utilize each other’s equipment independent of the distance between the physical locations. Sharing of resources saves time and travel costs. Social communication provides the possibility to exchange ideas and discuss research. The students and trainees can utilize the platform to learn new skills in robotic programming, controlling, and safety aspects. Cybersecurity is considered from the planning phase to the implementation phase. Only cybersecure methods, protocols, services, and components are used to implement the presented platform. Securing the low-level communication layer of the digital twins is essential to secure the safe teleoperation of the robots. Cybersecurity is the key enabler of the proposed platform, and after implementation, periodic vulnerability scans and updates enable maintaining cybersecurity. This thesis discusses solutions and methods for cyber securing an online digital twin platform. In conclusion, the thesis presents a common digital twin platform for education, training, and collaboration. The presented solution is cybersecure and accessible using mobile devices. The proposed platform, digital twin, and extended reality user interfaces contribute to the transitions to Education 4.0 and Industry 4.0
    corecore