110 research outputs found

    Dynamic latent variable modelling and fault detection of Tennessee Eastman challenge process

    Get PDF
    Dynamic principal component analysis (DPCA) is commonly used for monitoring multivariate processes that evolve in time. However, it is has been argued in the literature that, in a linear dynamic system, DPCA does not extract cross correlation explicitly. It does not also give the minimum dimension of dynamic factors with non zero singular values. These limitations reduces its process monitoring effectiveness. A new approach based on the concept of dynamic latent variables is therefore proposed in this paper for extracting latent variables that exhibit dynamic correlations. In this approach, canonical variate analysis (CVA) is used to capture process dynamics instead of the DPCA. Tests on the Tennessee Eastman challenge process confirms the workability of the proposed approach

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at ใ€ˆhttp://depts.washington.edu/control/LARRY/TE/download.htmlใ€‰ Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms

    Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)

    Get PDF
    Current multivariate control charts for monitoring large scale industrial processes are typically based on latent variable models, such as principal component analysis (PCA) or its dynamic counterpart when variables present auto-correlation (DPCA). In fact, it is usually considered that, under such conditions, DPCA is capable to effectively deal with both the cross- and auto-correlated nature of data. However, it can easily be verified that the resulting monitoring statistics (T2 and Q, also referred by SPE) still present significant auto-correlation. To handle this issue, a set of multivariate statistics based on DPCA and on the generation of decorrelated residuals were developed, that present low auto-correlation levels, and therefore are better positioned to implement SPC in a more consistent and stable way (DPCA-DR). The monitoring performance of these statistics was compared with that from other alternative methodologies for the well-known Tennessee Eastman process benchmark. From this study, we conclude that the proposed statistics had the highest detection rates on 19 out of the 21 faults, and are statistically superior to their PCA and DPCA counterparts. DPCA-DR statistics also presented lower auto-correlation, which simplifies their implementation and improves their reliability

    Indirect monitoring of energy efficiency in a simulated chemical process

    Get PDF
    Abstract. Energy efficiency is an important part of chemical process sustainability. Wasted energy contributes significantly to process costs and overall emissions. Therefore, contributions to improving energy efficiency in chemical processes are of value. The main objective of this thesis is the exploration of indirect energy efficiency monitoring methods and their compilation into a generalized framework. As part of the proposed framework, data-based modelling methods were explored and used to identify a model for estimating energy efficiency in a simulated process. The proposed framework can act as a potential tool in different practical applications with energy efficiency improvements as an objective. As a simulated test process for this thesis, the Tennessee Eastman process was utilized. This process is widely used in research, especially regarding fault diagnosis and control design. The process includes slow dynamics and nonlinearity, providing interesting challenges for research. Even though the process has been studied extensively, the energy efficiency aspect of the process has not been taken into account in research. The results of the thesis show that data-based models provide sufficient accuracy for real-time estimation of energy efficiency for the Tennessee Eastman process. Parts of the proposed framework were tested with the explored methods, but some areas were beyond the scope of this thesis. As such, further research, for example prediction of the energy efficiency horizon, fault diagnosis and advanced process control, could be beneficial.Energiatehokkuuden epรคsuora monitorointi simuloidussa kemiallisessa prosessissa. Tiivistelmรค. Energiatehokkuus on tรคrkeรค osa kemiallisen teollisuuden kestรคvyyttรค. Energian kรคytรถn tehottomuus nรคkyy merkittรคvรคsti kasvavina prosessikustannuksina ja kokonaispรครคstรถinรค. Toimet energiatehokkuuden nostamiseksi ovat siksi merkityksellisiรค. Diplomityรถn pรครคtavoitteena on erilaisten epรคsuorien energiatehokkuuden seurantamenetelmien tutkiminen ja niiden kokoaminen yleistettรคvรครคn menetelmรคkehykseen. Datapohjaisia mallinnusmenetelmiรค tutkitaan osana esitettyรค kehystรค, ja niitรค hyรถdynnetรครคn energiatehokkuutta arvioivan mallin muodostuksessa. Esitetty menetelmรคkehys voi toimia mahdollisena tyรถkaluna erilaisissa kรคyttรถkohteissa, joissa energiatehokkuuden parantaminen on pรครคmรครคrรคnรค. Tutkittavana kohteena diplomityรถssรค kรคytettiin simuloitua Tennessee Eastman prosessimallia. Vaikka prosessia on tutkittu laajasti, energiatehokkuuden tarkempi tarkastelu on jรครคnyt vajaaksi. Simuloitua prosessidataa hyรถdynnettiin tรคssรค tyรถssรค prosessin energiatehokkuuden mallipohjaisen arvion muodostuksessa. Tyรถssรค analysoitiin myรถs mallinnuksen luotettavuuteen vaikuttavia tekijรถitรค, kuten opetusdatan rajallisuutta ja siitรค seuraavaa mallin ekstrapolointia. Diplomityรถn tulokset osoittavat, ettรค Tennessee Eastman prosessin energiatehokkuuden reaaliaikainen arviointi datapohjaisilla menetelmillรค onnistuu riittรคvรคllรค tarkkuudella. Esitetyn menetelmรคkehyksen osia testattiin tutkituilla menetelmillรค, mutta jotkin alueet jรคivรคt tyรถn ulkopuolelle. Tulevaisuuden mahdollisiin tutkimusalueisiin kuuluukin energiatehokkuuden ennustaminen, vikadiagnostiikka ja niitรค yhdistรคvรค kehittynyt prosessisรครคtรถ

    Nonlinear data driven techniques for process monitoring

    Get PDF
    The goal of this research is to develop process monitoring technology capable of taking advantage of the large stores of data accumulating in modern chemical plants. There is demand for new techniques for the monitoring of non-linear topology and behavior, and this research presents a topological preservation method for process monitoring using Self Organizing Maps (SOM). The novel architecture presented adapts SOM to a full spectrum of process monitoring tasks including fault detection, fault identification, fault diagnosis, and soft sensing. The key innovation of the new technique is its use of multiple SOM (MSOM) in the data modeling process as well as the use of a Gaussian Mixture Model (GMM) to model the probability density function of classes of data. For comparison, a linear process monitoring technique based on Principal Component Analysis (PCA) is also used to demonstrate the improvements SOM offers. Data for the computational experiments was generated using a simulation of the Tennessee Eastman process (TEP) created in Simulink by (Ricker 1996). Previous studies focus on step changes from normal operations, but this work adds operating regimes with time dependent dynamics not previously considered with a SOM. Results show that MSOM improves upon both linear PCA as well as the standard SOM technique using one map for fault diagnosis, and also shows a superior ability to isolate which variables in the data are responsible for the faulty condition. With respect to soft sensing, SOM and MSOM modeled the compositions equally well, showing that no information was lost in dividing the map representation of process data. Future research will attempt to validate the technique on a real chemical process

    Nonlinear dynamic process monitoring using kernel methods

    Get PDF
    The application of kernel methods in process monitoring is well established. How- ever, there is need to extend existing techniques using novel implementation strate- gies in order to improve process monitoring performance. For example, process monitoring using kernel principal component analysis (KPCA) have been reported. Nevertheless, the e ect of combining kernel density estimation (KDE)-based control limits with KPCA for nonlinear process monitoring has not been adequately investi- gated and documented. Therefore, process monitoring using KPCA and KDE-based control limits is carried out in this work. A new KPCA-KDE fault identi cation technique is also proposed. Furthermore, most process systems are complex and data collected from them have more than one characteristic. Therefore, three techniques are developed in this work to capture more than one process behaviour. These include the linear latent variable-CVA (LLV-CVA), kernel CVA using QR decomposition (KCVA-QRD) and kernel latent variable-CVA (KLV-CVA). LLV-CVA captures both linear and dynamic relations in the process variables. On the other hand, KCVA-QRD and KLV-CVA account for both nonlinearity and pro- cess dynamics. The CVA with kernel density estimation (CVA-KDE) technique reported does not address the nonlinear problem directly while the regular kernel CVA approach require regularisation of the constructed kernel data to avoid com- putational instability. However, this compromises process monitoring performance. The results of the work showed that KPCA-KDE is more robust and detected faults higher and earlier than the KPCA technique based on Gaussian assumption of pro- cess data. The nonlinear dynamic methods proposed also performed better than the afore-mentioned existing techniques without employing the ridge-type regulari- sation

    Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series

    Get PDF
    Fault diagnosis in continuous dynamic systems can be challenging, since the variables in these systems are typically characterized by autocorrelation, as well as time variant parameters, such as mean vectors, covariance matrices, and higher order statistics, which are not handled well by methods designed for steady state systems. In dynamic systems, steady state approaches are extended to deal with these problems, essentially through feature extraction designed to capture the process dynamics from the time series. In this chapter, recent advances in feature extraction from signals or multivariate time series are reviewed. These methods can subsequently be considered in a classical statistical monitoring framework, such as used for steady state systems. In addition, an extension of nonlinear signal processing based on the use of unthresholded or global recurrence quantification analysis is discussed, where two multivariate image methods based on gray level co-occurrence matrices and local binary patterns are used to extract features from time series. When considering the well-known simulated Tennessee Eastman process in chemical engineering, it is shown that time series features obtained with this approach can be an effective means of discriminating between different fault conditions in the system. The approach provides a general framework that can be extended in multiple ways to time series analysis

    ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ•™์Šต ๋ฐ ์ถ”๋ก ๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2019. 2. ์ด์›๋ณด.Fault detection and diagnosis (FDD) is an essential part of safe plant operation. Fault detection refers to the process of detecting the occurrence of a fault quickly and accurately, and representative methods include the use of principal component analysis (PCA), and autoencoders (AE). Fault diagnosis is the process of isolating the root cause node of the fault, then determining the fault propagation path to identify the characteristic of the fault. Among the various methods, data-driven methods are the most widely-used, due to their applicability and good performance compared to analytical and knowledge-based methods. Although many studies have been conducted regarding FDD, no methodology for conducting every step of FDD exists, where the fault is effectively detected and diagnosed. Moreover, existing methods have limited applicability and show limited performance. Previous fault detection methods show loss of variable characteristics in dimensionality reduction methods and have large computational loads, leading to poor performance for complex faults. Likewise, preceding fault diagnosis methods show inaccurate fault isolation results, and biased fault propagation path analysis as a consequence of implementing knowledge-based characteristics for construction of digraphs of process variable relationships. Thus a comprehensive methodology for FDD which shows good performance for complex faults and variable relationships, is required. In this study, an efficient and effective comprehensive FDD methodology based on Markov random fields (MRF) modelling is proposed. MRFs provide an effective means for modelling complex variable relationships, and allows efficient computation of marginal probability of the process variables, leading to good performance regarding FDD. First, a fault detection framework for process variables, integrating the MRF modelling and structure learning with iterative graphical lasso is proposed. Graphical lasso is an algorithm for learning the structure of MRFs, and is applicable to large variable sets since it approximates the MRF structure by assuming the relationships between variables to be Gaussian. By iteratively applying the graphical lasso to monitored variables, the variable set is subdivided into smaller groups, and consequently the computational cost of MRF inference is mitigated allowing efficient fault detection. After variable groups are obtained through iterative graphical lasso, they are subject to the MRF monitoring framework that is proposed in this work. The framework obtains the monitoring statistics by calculating the probability density of the variable groups through kernel density estimation, and the monitoring limits are obtained separately for each group by using a false alarm rate of 5%. Second, a fault isolation and propagation path analysis methodology is proposed, where the conditional marginal probability of each variable is computed via inference, then is used to calculate the conditional contribution of individual variables during the occurrence of a fault. Using the kernel belief propagation (KBP) algorithm, which is an algorithm for learning and inferencing MRFs comprising continuous variables, the parameters of MRF are trained using normal process data, then the individual conditional contribution of each variable is calculated for every sample of the fault process data. By analyzing the magnitude and reaction speed of the conditional contribution of individual variables, the root fault node can be isolated and the fault propagation path can be determined effectively. Finally, the proposed methodology is verified by applying it to the well-known Tennessee Eastman process (TEP) model. Since the TEP has been used as a benchmark process over the past years for verifying various FDD methods, it serves the purpose of performance comparison. Also, since it consists of multiple units and has complex variable relationships such as recycle loops, it is suitable for verifying the performance of the proposed methodology. Application results show that the proposed methodology performs better compared to state-of-the-art FDD algorithms, in terms of both fault detection and diagnosis. Fault detection results showed that all 28 faults designed inside the TEP model were detected with a fault detection accuracy of over 95%, which is higher than any other previously proposed fault detection method. Also, the method showed good fault isolation and propagation path analysis results, where the root-cause node for every fault was detected correctly, and the characteristics of the initiated faults were identified through fault propagation path analysis.๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์‹œ์Šคํ…œ์€ ์•ˆ์ „ํ•œ ๊ณต์ • ์šด์˜์— ํ•„์ˆ˜์ ์ธ ๋ถ€๋ถ„์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€๋Š” ์ด์ƒ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ ์ฆ‰๊ฐ์ ์œผ๋กœ ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฃผ์„ฑ๋ถ„ ๋ถ„์„ ๋ฐ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•œ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์€ ๊ฒฐํ•จ์˜ ๊ทผ๋ณธ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ๊ฒฉ๋ฆฌํ•˜๊ณ , ์ด์ƒ์˜ ์ „ํŒŒ ๊ฒฝ๋กœ๋ฅผ ํƒ์ง€ํ•˜์—ฌ ์ด์ƒ์˜ ํŠน์„ฑ์„ ์‹๋ณ„ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค์ด๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์—๋Š” ๋ชจ๋ธ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก , ์ง€์‹ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก  ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ์ง€๋งŒ, ๊ณต์ •์— ๋Œ€ํ•œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ์œ ์šฉํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”์ง€๋งŒ, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ์†Œ์ˆ˜์— ๋ถˆ๊ณผํ•˜๋ฉฐ, ์กด์žฌํ•˜๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ๋“ค ์—ญ์‹œ ๋‘ ๋ถ„์•ผ ๋ชจ๋‘์—์„œ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š” ๊ฒฝ์šฐ๋Š” ์—†๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ œํ•œ๋˜์–ด ์žˆ์œผ๋ฉฐ ๊ณต์ •์— ์ ์šฉ์‹œ ์ œํ•œ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€์˜ ๊ฒฝ์šฐ, ๋Œ€์šฉ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณผ๋ถ€ํ•˜๋กœ ์ธํ•œ ๊ฐ์ง€ ๋Šฅ๋ ฅ์˜ ์ €ํ•˜, ์ฐจ์› ์ถ•์†Œ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์‚ฌ์šฉํ•  ์‹œ ์ด์— ๋”ฐ๋ฅธ ๋ณ€์ˆ˜ ํŠน์„ฑ ๋ฐ˜์˜์˜ ๋ถ€์ •ํ™•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ถ•์†Œ๋œ ์ฐจ์›์—์„œ์˜ ๊ณ„์‚ฐ์œผ๋กœ ์ธํ•˜์—ฌ ๋ณตํ•ฉ์ ์ธ ํ˜•ํƒœ์˜ ์ด์ƒ์„ ๊ฐ์ง€ํ•ด ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ ๋“ฑ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์˜ ๊ฒฝ์šฐ ์ด์ƒ์˜ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ์— ๋Œ€ํ•œ ๋ถ„์„์ด ๋ถ€์ •ํ™•ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€๋ฐ, ์ด๋Š” ์ฐจ์› ์ถ•์†Œ๋กœ ์ธํ•˜์—ฌ ๊ณต์ • ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜๋Š” ์„ฑ์งˆ์ด ์žˆ๊ณ , ๋ฐฉํ–ฅ์„ฑ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•  ์‹œ ๊ณต์ •์— ๋Œ€ํ•œ ์„ ํ–‰ ์ง€์‹์„ ์ ์šฉํ•จ์œผ๋กœ์จ ํŽธํ–ฅ๋œ ์ด์ƒ ์ง„๋‹จ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๋“ค์ด ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋Œ€ํ•œ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ๋“ค์„ ๊ณ ๋ คํ•ด ๋ดค์„๋•Œ, ๋ณ€์ˆ˜ ๊ฐ๊ฐ์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜์ง€ ์•Š๋„๋กํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€์™€ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉด์„œ๋„, ๊ณ„์‚ฐ์ƒ์˜ ํšจ์œจ์„ฑ์„ ๊ฐ–์ถ˜, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์ด ์‹œ๊ธ‰ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ๋ชจ๋ธ๋ง๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ์ ์ธ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ๋น„์„ ํ˜•์ ์ด๊ณ  ๋น„์ •๊ทœ์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๊ณ , ์ด์ƒ ๋ฐœ์ƒ ์ƒํ™ฉ์—์„œ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ†ต๊ณ„๊ฐ’ ๊ณ„์‚ฐ์‹œ์— ๊ฐ ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ํ™•๋ฅ  ๊ณ„์‚ฐ์„ ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํšจ๊ณผ์ ์ธ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์ˆ˜๋‹จ์ด ๋œ๋‹ค. ๊ธฐ๋ณธ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ํ™•๋ฅ ๊ฐ’ ๊ณ„์‚ฐ์‹œ์˜ ๋ถ€ํ•˜๊ฐ€ ํฌ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ๋ผ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ํ•จ๊ป˜ ํ™œ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ์ƒ์˜ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋‚ด์šฉ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ณต์ • ๋ณ€์ˆ˜๋ฅผ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•ด ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ธ๋ฐ, ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜์˜ ํ˜•ํƒœ๋กœ ๊ฐ€์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค๋ณ€์ˆ˜ ์‹œ์Šคํ…œ์—์„œ๋„ ํšจ์œจ์ ์œผ๋กœ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๋ชจ๋“  ๊ณต์ • ๋ณ€์ˆ˜๋“ค์ด ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ณ€์ˆ˜ ์ง‘๋‹จ์œผ๋กœ ๋ฌถ์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜ ์ง‘๋‹จ์„ ๋‹ค์ˆ˜์˜ ์†Œ์ง‘๋‹จ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š”๋ฐ, ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€์˜ ํšจ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ™•๋ฅ  ๊ณ„์‚ฐ์˜ ๋Œ€์ƒ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์—ฌ์คŒ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์ธ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ์ง‘๋‹จ๋ผ๋ฆฌ ๋ฌถ์—ฌ์„œ ๋ชจ๋ธ๋ง ๋œ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ์˜ ์ง„๋‹จ ๊ณผ์ •์—์„œ ๊ณต์ • ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„ ํŒŒ์•… ๋ฐ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ์šฉ์ดํ•˜๋„๋ก ํ•ด์ค€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง„ ๋‹ค์ˆ˜์˜ ๋ณ€์ˆ˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•˜์—ฌ ๊ฐ๊ฐ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ด์ƒ ๊ฐ์ง€๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ์ปค๋„ ๋ฐ€๋„ ์ถ”์ • ๋ฐฉ๋ฒ•๋ก ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์ปค๋„ ๋ฐ€๋„์˜ ๋Œ€์—ญํญ์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒํ•  ์‹œ ์ด๋ฅผ ํ™œ์šฉํ•œ ์ปค๋„ ๋ฐ€๋„ ์ถ”์ •๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ํ—ˆ์œ„ ์ง„๋‹จ์œจ์„ 5%๋กœ ๊ฐ€์ •ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•œ ๊ณต์ • ๊ฐ์ง€ ๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜์˜€๊ณ , ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๊ฐ€ ๊ณต์ • ๊ฐ์‹œ ๊ธฐ์ค€์„ ๋ณด๋‹ค ๋‚ฎ๊ฒŒ ๋  ๊ฒฝ์šฐ ์ด์ƒ์ด ๊ฐ์ง€๋œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ์ด์ƒ ๋ฐœ์ƒ ์‹œ ์›์ธ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก  ๊ณผ์ •์„ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ ๋ฐœ์ƒ ์‹œ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ํ•œ๊ณ„ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•ด ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ ๋ณ€์ˆ˜์˜ ๊ธฐ์—ฌ๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ๋Š” ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ ๋ฐฉ๋ฒ•๋ก ์ด ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ์ด๋Š” ์—ฐ์† ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์— ๋Œ€ํ•˜์—ฌ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ์ •์ƒ ์ƒํƒœ์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’๋“ค์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐœ์ƒ์‹œ ์ด์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ๋•Œ ๊ณ„์‚ฐ๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ํฌ๊ธฐ์™€, ์ด์ƒ ๋ฐœ์ƒ ์ดํ›„ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ๋ณ€ํ™” ๋ฐ˜์‘ ์†๋„๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ํŒ๋‹จํ•˜์—ฌ, ์ด์ƒ์˜ ์›์ธ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ฒฉ๋ฆฌ์™€ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์•ˆ๋œ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋ชจ๋ธ์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์€ ์ˆ˜๋…„๊ฐ„ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋ฒค์น˜๋งˆํฌ ๊ณต์ •์œผ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”๊ธฐ ๋•Œ๋ฌธ์—, ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ ๋‹ค๋ฅธ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•ด ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ˆ˜์˜ ๋‹จ์œ„ ๊ณต์ •์„ ํฌํ•จํ•˜๊ณ  ์žˆ๊ณ , ์ˆœํ™˜์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„ ์—ญ์‹œ ํฌํ•จํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ์‹œํ—˜ํ•ด ๋ณด๊ธฐ์— ์ ํ•ฉํ–ˆ๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋‚ด๋ถ€์—๋Š” 28๊ฐœ ์ข…๋ฅ˜์˜ ์ด์ƒ์ด ํ”„๋กœ๊ทธ๋žจ ์ƒ์— ๋‚ด์žฅ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ 96% ์ด์ƒ์˜ ๋†’์€ ์ด์ƒ ๊ฐ์ง€์œจ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋น„ํ•˜์—ฌ ์›”๋“ฑํžˆ ๋†’์€ ์ˆ˜์น˜์˜€๋‹ค. ๋˜ํ•œ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ, ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ์—ญ์‹œ ์ •ํ™•ํ•˜๊ฒŒ ํƒ์ง€ํ•˜์—ฌ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ, ๋ณธ ์—ฐ๊ตฌ ๋‚ด์šฉ์ด ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก  ์ค‘์—์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Contents Abstract i Contents iv List of Tables vii List of Figures ix 1 Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Markov Random Fields Modelling, Graphical Lasso, and Optimal Structure Learning 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 MRF Modelling & Structure Learning . . . . . . . . . . . . . . . . . 19 2.4.1 MRF modelling in process systems . . . . . . . . . . . . . . 19 2.4.2 Structure learning using iterative graphical lasso . . . . . . . 20 2.5 Application of Iterative Graphical Lasso on the TEP . . . . . . . . . . 24 3 Efficient Process Monitoring via the Integrated Use of Markov Random Fields Learning and the Graphical Lasso 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 MRF Monitoring Integrated with Graphical Lasso . . . . . . . . . . . 35 3.2.1 Step 1: Iterative graphical lasso . . . . . . . . . . . . . . . . 36 3.2.2 Step 2: MRF monitoring . . . . . . . . . . . . . . . . . . . . 36 3.3 Implementation of Glasso-MRF monitoring to the Tennessee Eastman process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 41 3.3.2 Glasso-MRF monitoring on TEP . . . . . . . . . . . . . . . . 48 3.3.3 Fault detection accuracy comparison with other monitoring techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4 Fault detection speed & fault propagation . . . . . . . . . . . 95 4 Process Fault Diagnosis via Markov Random Fields Learning and Inference 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Probabilistic graphical models & Markov random fields . . . 106 4.2.2 Kernel belief propagation . . . . . . . . . . . . . . . . . . . . 107 4.3 Fault Diagnosis via MRF Modeling . . . . . . . . . . . . . . . . . . 113 4.3.1 MRF structure learning via graphical lasso . . . . . . . . . . 116 4.3.2 Kernel belief propagation - bandwidth selection . . . . . . . . 116 4.3.3 Conditional contribution evaluation . . . . . . . . . . . . . . 117 4.4 Application Results & Discussion . . . . . . . . . . . . . . . . . . . 118 4.4.1 Two tank process . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.2 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 137 5 Concluding Remarks 152 Bibliography 157 Nomenclature 169 Abstract (In Korean) 170Docto

    Malliprediktiivinen sรครคdin Tennessee Eastman prosessille

    Get PDF
    This thesis aims to design a multivariable Model Predictive Control (MPC) scheme for a complex industrial process. The focus of the thesis is on the implementation and testing of a linear MPC control strategy combined with fault detection and diagnosis methods. The studied control methodology is based on a linear time invariant state-space model and the quadratic programming optimization procedure. The control scheme is realized as a supervisory one, where the MPC is used to calculate the optimal set point trajectories for the lower level PI controllers, thus aiming to decrease the fluctuations in the end product flows. The Tennessee Eastman (TE) process is used as the testing environment. The TE process is a benchmark based on a real process modified for testing. It has five units, four reactants, an inert, two products and a byproduct. The control objective is to maintain the production rate and the product quality at the desired level. To achieve this, the MPC implemented in this thesis gives setpoints to three stabilizing PI control loops around the reactor and the product stripper. The performance of the designed control systems is evaluated by inducing process disturbances, setpoint changes, and faults for two operational regimes. The obtained results show the efficiency of the adopted approach in handling disturbances and flexibility in control of different operational regimes without the need of retuning. To suppress the effects caused by faults, an additional level that provides fault detection and controller reconfiguration should be developed as further research.Tรคmรคn diplomityรถn tavoite on suunnitella monimuuttujainen-malliprediktiivinen sรครคdin (MPC) teolliselle prosessille. Diplomityรถ keskittyy toteuttamaan ja testaamaan lineaarisen MPC strategian, joka yhdistettynรค vikojen havainnointiin ja tunnistukseen sekรค uudelleen konfigurointiin voidaan laajentaa vikasietoiseksi. Tutkittu sรครคtรถstrategia perustuu lineaariseen ajan suhteen muuttumattomaan tilataso-malliin ja neliรถllisen ohjelmoinnin optimointimenetelmรครคn. Sรครคtรถ on toteutettu nk. ylemmรคn tason jรคrjestelmรคnรค, eli MPC:tรค kรคytetรครคn laskemaan optimaaliset asetusarvot alemman sรครคtรถtason PI sรครคtimille, tavoitteena vรคhentรครค vaihtelua lopputuotteen virroissa. Tennessee Eastman (TE) prosessia kรคytetรครคn testiympรคristรถnรค. TE on testiprosessi, joka perustuu todelliseen teollisuuden prosessiin ja jota on muokattu testauskรคyttรถรถn sopivaksi. Prosessissa on viisi yksikkรถรค, neljรค lรคhtรถainetta, inertti, kaksi tuotetta ja yksi sivutuote. Sรครคtรถtavoite on yllรคpitรครค haluttu taso tuotannon mรครคrรคssรค ja laadussa. Tรคmรคn saavuttamiseksi tรคssรค diplomityรถssรค toteutettu MPC antaa asetusarvoja kolmelle stabiloivalle PI-sรครคtimelle reaktorin ja stripperin hallinnassa. Sรครคtรถsysteemin suorituskykyรค arvioitiin aiheuttamalla prosessiin hรคiriรถitรค, asetusarvon muutoksia ja vikoja eri operatiivisissa olosuhteissa. Saavutetut tulokset osoittavat valitun menetelmรคn tehokkuuden hรคiriรถiden kรคsittelyyn ja joustavaan sรครคtรถรถn eri olosuhteissa. Tutkimuksen jatkokehityksenรค vikojen vaikutuksen vaimentamiseksi sรครคtรถรถn tulisi lisรคtรค taso, joka havaitsee viat ja uudelleen konfiguroi sรครคtimen sen mukaisesti

    Data-driven, mechanistic and hybrid modelling for statistical fault detection and diagnosis in chemical processes

    Get PDF
    Research and applications of multivariate statistical process monitoring and fault diagnostic techniques for performance monitoring of continuous and batch processes continue to be a very active area of research. Investigations into new statistical and mathematical methods and there applicability to chemical process modelling and performance monitoring is ongoing. Successive researchers have proposed new techniques and models to address the identified limitations and shortcomings of previously applied linear statistical methods such as principal component analysis and partial least squares. This thesis contributes to this volume of research and investigation into alternative approaches and their suitability for continuous and batch process applications. In particular, the thesis proposes a modified canonical variate analysis state space model based monitoring scheme and compares the proposed scheme with several existing statistical process monitoring approaches using a common benchmark simulator โ€“ Tennessee Eastman benchmark process. A hybrid data driven and mechanistic model based process monitoring approach is also investigated. The proposed hybrid scheme gives more specific considerations to the implementation and application of the technique for dynamic systems with existing control structures. A nonmechanistic hybrid approach involving the combination of nonlinear and linear data based statistical models to create a pseudo time-variant model for monitoring of large complex plants is also proposed. The hybrid schemes are shown to provide distinct advantages in terms of improved fault detection and reliability. The demonstration of the hybrid schemes were carried out on two separate simulated processes: a CSTR with recycle through a heat exchanger and a CHEMCAD simulated distillation column. Finally, a batch process monitoring schemed based on a proposed implementation of interval partial least squares (IPLS) technique is demonstrated using a benchmark simulated fed-batch penicillin production process. The IPLS strategy employs data unfolding methods and a proposed algorithm for segmentation of the batch duration into optimal intervals to give a unique implementation of a Multiway-IPLS model. Application results show that the proposed method gives better model prediction and monitoring performance than the conventional IPLS approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • โ€ฆ
    corecore