53,672 research outputs found

    Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge

    Full text link
    This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.Comment: Federated Conference on Computer Science and Information Systems, Prague (FedCSIS-2017) (Prague, Czech Republic

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    A comparative study of game theoretic and evolutionary models for software agents

    No full text
    Most of the existing work in the study of bargaining behaviour uses techniques from game theory. Game theoretic models for bargaining assume that players are perfectly rational and that this rationality in common knowledge. However, the perfect rationality assumption does not hold for real-life bargaining scenarios with humans as players, since results from experimental economics show that humans find their way to the best strategy through trial and error, and not typically by means of rational deliberation. Such players are said to be boundedly rational. In playing a game against an opponent with bounded rationality, the most effective strategy of a player is not the equilibrium strategy but the one that is the best reply to the opponent's strategy. The evolutionary model provides a means for studying the bargaining behaviour of boundedly rational players. This paper provides a comprehensive comparison of the game theoretic and evolutionary approaches to bargaining by examining their assumptions, goals, and limitations. We then study the implications of these differences from the perspective of the software agent developer

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    Shallow decision-making analysis in General Video Game Playing

    Full text link
    The General Video Game AI competitions have been the testing ground for several techniques for game playing, such as evolutionary computation techniques, tree search algorithms, hyper heuristic based or knowledge based algorithms. So far the metrics used to evaluate the performance of agents have been win ratio, game score and length of games. In this paper we provide a wider set of metrics and a comparison method for evaluating and comparing agents. The metrics and the comparison method give shallow introspection into the agent's decision making process and they can be applied to any agent regardless of its algorithmic nature. In this work, the metrics and the comparison method are used to measure the impact of the terms that compose a tree policy of an MCTS based agent, comparing with several baseline agents. The results clearly show how promising such general approach is and how it can be useful to understand the behaviour of an AI agent, in particular, how the comparison with baseline agents can help understanding the shape of the agent decision landscape. The presented metrics and comparison method represent a step toward to more descriptive ways of logging and analysing agent's behaviours
    corecore