10,165 research outputs found

    Trade-offs in multi-party Bell inequality violations in qubit networks

    Full text link
    Two overlapping bipartite binary input Bell inequalities cannot be simultaneously violated as this would contradict the usual no-signalling principle. This property is known as monogamy of Bell inequality violations and generally Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations of a few inequalities at once. Here we systematically study monogamy relations between correlation Bell inequalities both within quantum theory and under the sole assumption of no signalling. We first investigate the trade-offs in Bell violations arising from the uncertainty relation for complementary binary observables, and exhibit several network configurations in which a tight trade-off arises in this fashion. We then derive a tight trade-off relation which cannot be obtained from the uncertainty relation showing that it does not capture monogamy entirely. The results are extended to Bell inequalities involving different number of parties and find applications in device-independent secret sharing and device-independent randomness extraction. Although two multipartite Bell inequalities may be violated simultaneously, we show that genuine multi-party non-locality, as evidenced by a generalised Svetlichny inequality, does exhibit monogamy property. Finally, using the relations derived we reveal the existence of flat regions in the set of quantum correlations.Comment: 15 pages, 5 figure

    Quantum Prisoner's Dilemma game on hypergraph networks

    Full text link
    We study the possible advantages of adopting of quantum strategies in multi-player evolutionary games. We base our study on the three-player Prisoner's Dilemma (PD) game. In order to model the simultaneous interaction between three agents we use hypergraphs and hypergraph networks. In particular, we study two types of networks: a random network and a SF-like network. The obtained results show that in the case of a three player game on a hypergraph network, quantum strategies are not necessarily stochastically stable strategies. In some cases, the defection strategy can be as good as a quantum one.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:quant-ph/0004076 by other author

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Quantum Auctions: Facts and Myths

    Get PDF
    Quantum game theory, whatever opinions may be held due to its abstract physical formalism, have already found various applications even outside the orthodox physics domain. In this paper we introduce the concept of a quantum auction, its advantages and drawbacks. Then we describe the models that have already been put forward. A general model involves Wigner formalism and infinite dimensional Hilbert spaces - we envisage that the implementation might not be an easy task. But a restricted model advocated by the Hewlett-Packard group (Hogg et al) seems to be much easier to implement. We focus on problems related to combinatorial auctions and technical assumptions that are made. Powerful quantum algorithms for finding solutions would extend the range of possible applications. Quantum strategies, being qubits, can be teleported but are immune from cloning - therefore extreme privacy of agent's activity could in principle be guaranteed. Then we point out some key problem that have to be solved before commercial use would be possible. With present technology, optical networks, single photon sources and detectors seems to be sufficient for experimental realization in the near future.
    corecore