4,536 research outputs found

    Completing unknown portions of 3D scenes by 3D visual propagation

    Get PDF
    Institute of Perception, Action and BehaviourAs the requirement for more realistic 3D environments is pushed forward by the computer {graphics | movie | simulation | games} industry, attention turns away from the creation of purely synthetic, artist derived environments towards the use of real world captures from the 3D world in which we live. However, common 3D acquisition techniques, such as laser scanning and stereo capture, are realistically only 2.5D in nature - such that the backs and occluded portions of objects cannot be realised from a single uni-directional viewpoint. Although multi-directional capture has existed for sometime, this incurs additional temporal and computational cost with no existing guarantee that the resulting acquisition will be free of minor holes, missing surfaces and alike. Drawing inspiration from the study of human abilities in 3D visual completion, we consider the automated completion of these hidden or missing portions in 3D scenes originally acquired from 2.5D (or 3D) capture. We propose an approach based on the visual propagation of available scene knowledge from the known (visible) scene areas to these unknown (invisible) 3D regions (i.e. the completion of unknown volumes via visual propagation - the concept of volume completion). Our proposed approach uses a combination of global surface fitting, to derive an initial underlying geometric surface completion, together with a 3D extension of nonparametric texture synthesis in order to provide the propagation of localised structural 3D surface detail (i.e. surface relief). We further extend our technique both to the combined completion of 3D surface relief and colour and additionally to hierarchical surface completion that offers both improved structural results and computational efficiency gains over our initial non-hierarchical technique. To validate the success of these approaches we present the completion and extension of numerous 2.5D (and 3D) surface examples with relief ranging in natural, man-made, stochastic, regular and irregular forms. These results are evaluated both subjectively within our definition of plausible completion and quantitatively by statistical analysis in the geometric and colour domains

    Neural apparent BRDF fields for multiview photometric stereo

    Full text link
    We propose to tackle the multiview photometric stereo problem using an extension of Neural Radiance Fields (NeRFs), conditioned on light source direction. The geometric part of our neural representation predicts surface normal direction, allowing us to reason about local surface reflectance. The appearance part of our neural representation is decomposed into a neural bidirectional reflectance function (BRDF), learnt as part of the fitting process, and a shadow prediction network (conditioned on light source direction) allowing us to model the apparent BRDF. This balance of learnt components with inductive biases based on physical image formation models allows us to extrapolate far from the light source and viewer directions observed during training. We demonstrate our approach on a multiview photometric stereo benchmark and show that competitive performance can be obtained with the neural density representation of a NeRF.Comment: 9 pages, 6 figures, 1 tabl

    Methods for 3D Geometry Processing in the Cultural Heritage Domain

    Get PDF
    This thesis presents methods for 3D geometry processing under the aspects of cultural heritage applications. After a short overview over the relevant basics in 3D geometry processing, the present thesis investigates the digital acquisition of 3D models. A particular challenge in this context are on the one hand difficult surface or material properties of the model to be captured. On the other hand, the fully automatic reconstruction of models even with suitable surface properties that can be captured with Laser range scanners is not yet completely solved. This thesis presents two approaches to tackle these challenges. One exploits a thorough capture of the object’s appearance and a coarse reconstruction for a concise and realistic object representation even for objects with problematic surface properties like reflectivity and transparency. The other method concentrates on digitisation via Laser-range scanners and exploits 2D colour images that are typically recorded with the range images for a fully automatic registration technique. After reconstruction, the captured models are often still incomplete, exhibit holes and/or regions of insufficient sampling. In addition to that, holes are often deliberately introduced into a registered model to remove some undesired or defective surface part. In order to produce a visually appealing model, for instance for visualisation purposes, for prototype or replica production, these holes have to be detected and filled. Although completion is a well-established research field in 2D image processing and many approaches do exist for image completion, surface completion in 3D is a fairly new field of research. This thesis presents a hierarchical completion approach that employs and extends successful exemplar-based 2D image processing approaches to 3D and fills in detail-equipped surface patches into missing surface regions. In order to identify and construct suitable surface patches, selfsimilarity and coherence properties of the surface context of the hole are exploited. In addition to the reconstruction and repair, the present thesis also investigates methods for a modification of captured models via interactive modelling. In this context, modelling is regarded as a creative process, for instance for animation purposes. On the other hand, it is also demonstrated how this creative process can be used to introduce human expertise into the otherwise automatic completion process. This way, reconstructions are feasible even of objects where already the data source, the object itself, is incomplete due to corrosion, demolition, or decay.Methoden zur 3D-Geometrieverarbeitung im Kulturerbesektor In dieser Arbeit werden Methoden zur Bearbeitung von digitaler 3D-Geometrie unter besonderer BerĂŒcksichtigung des Anwendungsbereichs im Kulturerbesektor vorgestellt. Nach einem kurzen Überblick ĂŒber die relevanten Grundlagen der dreidimensionalen Geometriebehandlung wird zunĂ€chst die digitale Akquise von dreidimensionalen Objekten untersucht. Eine besondere Herausforderung stellen bei der Erfassung einerseits ungĂŒnstige OberflĂ€chen- oder Materialeigenschaften der Objekte dar (wie z.B. ReflexivitĂ€t oder Transparenz), andererseits ist auch die vollautomatische Rekonstruktion von solchen Modellen, die sich verhĂ€ltnismĂ€ĂŸig problemlos mit Laser-Range Scannern erfassen lassen, immer noch nicht vollstĂ€ndig gelöst. Daher bilden zwei neuartige Verfahren, die diesen Herausforderungen begegnen, den Anfang. Auch nach der Registrierung sind die erfassten DatensĂ€tze in vielen FĂ€llen unvollstĂ€ndig, weisen Löcher oder nicht ausreichend abgetastete Regionen auf. DarĂŒber hinaus werden in vielen Anwendungen auch, z.B. durch Entfernen unerwĂŒnschter OberflĂ€chenregionen, Löcher gewollt hinzugefĂŒgt. FĂŒr eine optisch ansprechende Rekonstruktion, vor allem zu Visualisierungszwecken, im Bildungs- oder Unterhaltungssektor oder zur Prototyp- und Replik-Erzeugung mĂŒssen diese Löcher zunĂ€chst automatisch detektiert und anschließend geschlossen werden. Obwohl dies im zweidimensionalen Fall der Bildbearbeitung bereits ein gut untersuchtes Forschungsfeld darstellt und vielfĂ€ltige AnsĂ€tze zur automatischen BildvervollstĂ€ndigung existieren, ist die Lage im dreidimensionalen Fall anders, und die Übertragung von zweidimensionalen AnsĂ€tzen in den 3D stellt vielfach eine große Herausforderung dar, die bislang keine zufriedenstellenden Lösungen erlaubt hat. Nichtsdestoweniger wird in dieser Arbeit ein hierarchisches Verfahren vorgestellt, das beispielbasierte Konzepte aus dem 2D aufgreift und Löcher in OberflĂ€chen im 3D unter Ausnutzung von SelbstĂ€hnlichkeiten und KohĂ€renzeigenschaften des OberflĂ€chenkontextes schließt. Um plausible OberflĂ€chen zu erzeugen werden die Löcher dabei nicht nur glatt gefĂŒllt, sondern auch feinere Details aus dem Kontext rekonstruiert. Abschließend untersucht die vorliegende Arbeit noch die Modifikation der vervollstĂ€ndigten Objekte durch Freiformmodellierung. Dies wird dabei zum einen als kreativer Prozess z.B. zu Animationszwecken betrachtet. Zum anderen wird aber auch untersucht, wie dieser kreative Prozess benutzt werden kann, um etwaig vorhandenes Expertenwissen in die ansonsten automatische VervollstĂ€ndigung mit einfließen zu lassen. Auf diese Weise werden auch Rekonstruktionen ermöglicht von Objekten, bei denen schon die Datenquelle, also das Objekt selbst z.B. durch Korrosion oder mutwillige Zerstörung unvollstĂ€ndig ist

    Prostate Tumor Volume Measurement on Digital Histopathology and Magnetic Resonance Imaging

    Get PDF
    An accurate assessment of prostate tumour burden supports appropriate treatment selection, ranging from active surveillance through focal therapy, to radical whole-prostate therapies. For selected patients, knowledge of the three-dimensional locations and sizes of prostate tumours on pre-procedural imaging supports planning of effective focal therapies that preferentially target tumours, while sparing surrounding healthy tissue. In the post-prostatectomy context, pathologic measurement of tumour burden in the surgical specimen may be an independent prognostic factor determining the need for potentially life-saving adjuvant therapy. An accurate and repeatable method for tumour volume assessment based on histology sections taken from the surgical specimen would be supportive both to the clinical workflow in the post-prostatectomy setting and to imaging validation studies correlating tumour burden measurements on pre-prostatectomy imaging with reference standard histologic tumour volume measurements. Digital histopathology imaging is enabling a transition to a more objective quantification of some surgical pathology assessments, such as tumour volume, that are currently visually estimated by pathologists and subject to inter-observer variability. Histologic tumour volume measurement is challenged by the traditional 3–5 mm sparse spacing of images acquired from sections of radical prostatectomy specimens. Tumour volume estimates may benefit from a well-motivated approach to inter-slide tumour boundary interpolation that crosses these large gaps in a smooth fashion. This thesis describes a new level set-based shape interpolation method that reconstructs smooth 3D shapes based on arbitrary 2D tumour contours on digital histology slides. We measured the accuracy of this approach and used it as a reference standard against which to compare previous approaches in the literature that are simpler to implement in a clinical workflow, with the aim of determining a method for histologic tumour volume estimation that is both accurate and amenable to widespread implementation. We also measured the effect of decreasing inter-slide spacing on the repeatability of histologic tumour volume estimation. Furthermore, we used this histologic reference standard for tumour volume to measure the accuracy, inter-observer variability, and inter-sequence variability of prostate tumour volume estimation based on radiologists’ contouring of multi-parametric magnetic resonance imaging (MPMRI). Our key findings were that (1) simple approaches to histologic tumour volume estimation that are based on 2- or 3-dimensional linear tumour measurements are more accurate than those based on 1-dimensional measurements; (2) although tumour shapes produced by smooth through-slide interpolation are qualitatively substantially different from those obtained from a planimetric approach normally used as a reference standard for histologic tumour volume, the volumes obtained were similar; (3) decreasing inter-slide spacing increases repeatability of histologic tumour volume estimates, and this repeatability decreases rapidly for inter-slide spacing values greater than 5 mm; (4) on MPMRI, observers consistently overestimated tumour volume as compared to the histologic reference standard; and (5) inter-sequence variability in MPMRI-based tumour volume estimation exceeded inter-observer variability

    Fine-Scaled 3D Geometry Recovery from Single RGB Images

    Get PDF
    3D geometry recovery from single RGB images is a highly ill-posed and inherently ambiguous problem, which has been a challenging research topic in computer vision for several decades. When fine-scaled 3D geometry is required, the problem become even more difficult. 3D geometry recovery from single images has the objective of recovering geometric information from a single photograph of an object or a scene with multiple objects. The geometric information that is to be retrieved can be of different representations such as surface meshes, voxels, depth maps or 3D primitives, etc. In this thesis, we investigate fine-scaled 3D geometry recovery from single RGB images for three categories: facial wrinkles, indoor scenes and man-made objects. Since each category has its own particular features, styles and also variations in representation, we propose different strategies to handle different 3D geometry estimates respectively. We present a lightweight non-parametric method to generate wrinkles from monocular Kinect RGB images. The key lightweight feature of the method is that it can generate plausible wrinkles using exemplars from one high quality 3D face model with textures. The local geometric patches from the source could be copied to synthesize different wrinkles on the blendshapes of specific users in an offline stage. During online tracking, facial animations with high quality wrinkle details can be recovered in real-time as a linear combination of these personalized wrinkled blendshapes. We propose a fast-to-train two-streamed CNN with multi-scales, which predicts both dense depth map and depth gradient for single indoor scene images.The depth and depth gradient are then fused together into a more accurate and detailed depth map. We introduce a novel set loss over multiple related images. By regularizing the estimation between a common set of images, the network is less prone to overfitting and achieves better accuracy than competing methods. Fine-scaled 3D point cloud could be produced by re-projection to 3D using the known camera parameters. To handle highly structured man-made objects, we introduce a novel neural network architecture for 3D shape recovering from a single image. We develop a convolutional encoder to map a given image to a compact code. Then an associated recursive decoder maps this code back to a full hierarchy, resulting a set of bounding boxes to represent the estimated shape. Finally, we train a second network to predict the fine-scaled geometry in each bounding box at voxel level. The per-box volumes are then embedded into a global one, and from which we reconstruct the final meshed model. Experiments on a variety of datasets show that our approaches can estimate fine-scaled geometry from single RGB images for each category successfully, and surpass state-of-the-art performance in recovering faithful 3D local details with high resolution mesh surface or point cloud

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • 

    corecore