200 research outputs found

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    Vehicles Platooning in Urban Environments: Integrated Consensus-based Longitudinal Control with Gap Closure Maneuvering and Collision Avoidance Capabilities

    Get PDF
    International audienceThis paper proposes a distributed longitudinal controller for car-like vehicles platooning that travel in an urban environment. The presented control strategy combines the platoon maintaining, gap closure, and collision avoidance functionality into a unified control law. A consensus-based controller designed in the path coordinates is the basis of the proposed control strategy and its role is to achieve position and velocity consensus among the platoon members taking into consideration the nature of the motion in an urban environment. For platoon creation, gap closure scenario is highly recommended for achieving a fast convergence of the platoon. For that, an algorithm is proposed to adjust the controller parameters online. A longitudinal collision between followers can occur due to several circumstances. Therefore, the proposed control strategy considers the assurance of collision avoidance by the guarantee of a minimum safe inter-vehicle distance. Convergence of the proposed algorithm is proved in the different modes of operations. Finally, studies are conducted to demonstrate and validate the efficiency of the proposed control strategy under different driving conditions. To better emulate a realistic setup, the controller is tested by an implementation of the car-like vehicles platoon in a vehicular mobility simulator called ICARS, which considers the real vehicle dynamics and other platooning staff in urban environments
    • …
    corecore